对于线形时不变系统 我们希望它有两个性质 一个是它能表示绝大多数信号 第二个是对一个基本信号的响应要很简单
经过研究 复指数信号有这样的性质
对于一个复指数信号来说 线形时不变系统对它的响应也是一个复指数信号 只是振幅不同
这是一个好性质 类似线性代数里的特征向量和特征值 这里叫特征函数
证明过程就是单纯的计算卷积
看书里的证明即可
这里提到了傅里叶分析只涉及复指数的特殊形式 e的指数只考虑虚数 z只考虑单位振幅的复数
接下来我们先看周期信号 而周期信号中 先看连续信号 然后引出了连续时间周期信号下的一组基
这样的形式叫做傅里叶级数 所以傅里叶级数是最简单形式 代表连续时间的周期信号
这里提到了对于实 信号 傅里叶级数可以把虚部去掉 就变成了三角函数形式 不过用复指数形式其实更加方便 就算是实信号也是一样
然后我们就是要计算傅里叶级数的系数 推导也不难 两边都乘以一个复指数信号 然后在一个周期内积分 发现大部分是0
最后发现系数就是原函数和基的内积 也就是积分 积分就一个周期内就行
求的的傅里叶级数的系数 称为原函数的频谱系数
对于周期性方波 他的傅里叶频谱是离散的 是某些sinc函数包络等间隔样本
如果某一个函数可以展开成傅里叶级数 那么用有限项谐波复指数来近似的话 它就是最佳近似
傅里叶级数收敛证明非常复杂 我们知道结论就行 就是它在一个周期内的能量是有限的 就是平方的积分是有限的 那么就是收敛的 虽然并不是处处相等 但可以是几乎处处相等
还有迪尼定理 这里也不展开了
仅做记录
这里看到方波近似的边缘总是有凸起
按照理论 不连续点应该要收敛到两边平均值的一半 t越靠近不连续点 需要的级数的项就必须越多 这样才能分割突起向边缘压缩 因为这个现象的存在 为了避免不连续点点误差 需要足够多的级数项
傅里叶级数具有线形性质 两个傅里叶级数线形相加 等价于频谱系数线形相加 时移性质 原始信号平移 傅里叶频谱系数也用复指数平移 模保持不变
时间反转 系数下标反转
时移尺度变化 系数不变 但基波频率变化
两个傅里叶级数相乘 相当于系数离散卷积
共轭函数 系数叶共轭 下标反转
这里还说明了如果x是实偶函数 可以推出 它的级数系数也是实偶函数 如果是实奇函数 那么傅里叶系数就是纯虚函数
帕瓦尔定理 一个周期信号的总平均功率是他全部谐波分量的平均功率之和
重要性质的表格