信号与系统第三章 周期信号的傅里叶级数表示 连续函数

本文探讨了线性时不变系统对复指数信号的响应性质,介绍了傅里叶分析中的特征函数概念,重点讲解了傅里叶级数在周期信号表示中的应用,包括其系数计算、收敛性以及线性变换规则。此外,还提及了帕瓦尔定理等重要性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于线形时不变系统 我们希望它有两个性质 一个是它能表示绝大多数信号 第二个是对一个基本信号的响应要很简单

经过研究 复指数信号有这样的性质 

对于一个复指数信号来说 线形时不变系统对它的响应也是一个复指数信号 只是振幅不同 

5e842ea2ebce4151af2a3abed71e920c.png

这是一个好性质 类似线性代数里的特征向量和特征值 这里叫特征函数

证明过程就是单纯的计算卷积

看书里的证明即可

e4f86cf439bb44e199ce414859b5c416.png 

这里提到了傅里叶分析只涉及复指数的特殊形式 e的指数只考虑虚数 z只考虑单位振幅的复数

接下来我们先看周期信号 而周期信号中 先看连续信号 然后引出了连续时间周期信号下的一组基

9295fb2830c849fe9c54e7ddf08ca053.png 

这样的形式叫做傅里叶级数 所以傅里叶级数是最简单形式 代表连续时间的周期信号

0530642d455c4111bc4d6222c4d5fdd9.png 

这里提到了对于实 信号 傅里叶级数可以把虚部去掉 就变成了三角函数形式 不过用复指数形式其实更加方便 就算是实信号也是一样

c2d9ac67c17746fe9cbd1983f483f8ed.png 

 然后我们就是要计算傅里叶级数的系数 推导也不难 两边都乘以一个复指数信号 然后在一个周期内积分 发现大部分是0

最后发现系数就是原函数和基的内积 也就是积分 积分就一个周期内就行

497459e9454d4e53bba24b589e331ad3.png

求的的傅里叶级数的系数 称为原函数的频谱系数 

对于周期性方波 他的傅里叶频谱是离散的 是某些sinc函数包络等间隔样本  

2c065daf57284247b78829a18282215c.png

如果某一个函数可以展开成傅里叶级数 那么用有限项谐波复指数来近似的话 它就是最佳近似  

傅里叶级数收敛证明非常复杂 我们知道结论就行 就是它在一个周期内的能量是有限的 就是平方的积分是有限的 那么就是收敛的 虽然并不是处处相等 但可以是几乎处处相等

还有迪尼定理 这里也不展开了

仅做记录

e740a2e54c83408499454dd0f3756cba.png

fe33ac6182664ac9862ca2591eaa308f.png 

e7b5d644324a45c5b8419bcef326fdd3.png 

这里看到方波近似的边缘总是有凸起

按照理论 不连续点应该要收敛到两边平均值的一半 t越靠近不连续点 需要的级数的项就必须越多 这样才能分割突起向边缘压缩 因为这个现象的存在 为了避免不连续点点误差 需要足够多的级数项

傅里叶级数具有线形性质 两个傅里叶级数线形相加 等价于频谱系数线形相加 时移性质  原始信号平移 傅里叶频谱系数也用复指数平移 模保持不变

e50e9d80ab3f4899a09fd9ccb234acf0.png

时间反转 系数下标反转

时移尺度变化 系数不变 但基波频率变化

两个傅里叶级数相乘 相当于系数离散卷积

共轭函数 系数叶共轭 下标反转

b7139cab451a474da012729a98febf0c.png

这里还说明了如果x是实偶函数 可以推出 它的级数系数也是实偶函数 如果是实奇函数 那么傅里叶系数就是纯虚函数

帕瓦尔定理 一个周期信号的总平均功率是他全部谐波分量的平均功率之和

a39151b03dbb4c51b13fe4bef1870baf.png 

重要性质的表格

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yxriyin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值