大数据保护产品在当今企业中至关重要,它们能帮助组织保护海量、复杂且快速增长的数据集。这些产品超越了传统数据安全的范畴,解决了大数据 海量(Volume)、多样(Variety)、高速(Velocity)和真实性(Veracity) 特性所带来的独特挑战。
一、大数据保护产品能力
一个强大的大数据保护产品通常会提供一套全面的能力,以确保数据在其整个生命周期(从采集到分析和归档)中的安全。
1. 数据发现与分类
这是最基础的能力,能帮助你了解拥有哪些数据、数据存储在哪里以及其敏感程度。
- 自动化扫描: 自动发现各种大数据平台(如 Hadoop、Spark、NoSQL 数据库、云数据湖)以及结构化/非结构化格式中的敏感数据。
- 敏感数据识别: 使用预定义规则、模式和机器学习自动识别个人可识别信息(PII)、财务数据、健康记录、知识产权和其他机密信息。
- 上下文分类: 根据数据内容、上下文和合规性要求(如 GDPR、CCPA、中国《数据安全法》)分配敏感度标签和分类。
2. 访问控制与授权
确保只有经过授权的用户和应用程序才能访问特定数据。
- 细粒度访问控制: 实施高度精细的访问策略(例如,列级、行级、基于标签的访问),超越传统的基于角色的访问控制(RBAC),支持基于属性的访问控制(ABAC)。
- 集中式策略管理: 从单个控制台管理异构大数据环境中的访问策略。
- 身份验证与身份集成: 与现有身份和访问管理(IAM)系统(如 Active Directory、LDAP)集成,并支持多因素身份验证(MFA)以实现强大的用户验证。
- 特权访问管理(PAM): 监控和控制对敏感数据拥有广泛访问权限的高权限用户(如 DBA、数据工程师)的活动。
3. 数据加密
保护静态存储和传输中的数据免受未经授权的访问,即使底层存储被攻破也不受影响。
- 静态数据加密: 加密存储在大数据集群(HDFS、NoSQL 数据库等)中的数据,通常涉及透明数据加密(TDE)或文件级加密。
- 传输中数据加密: 使用 TLS/SSL 等协议保护大数据组件、应用程序和用户之间的数据传输。
- 格式保留加密(FPE): 加密敏感数据同时保留其原始格式,使应用程序无需进行重大代码更改即可继续运行。
- 集中式密钥管理: 使用强大的密钥管理系统(KMS)安全地管理和轮换加密密钥。
4. 数据脱敏与去标识化
将敏感数据转换为非敏感格式,用于分析、测试或开发目的,同时保留数据效用。
- 静态数据脱敏(SDM): 对生产数据进行批量脱敏处理后,生成可用于非生产环境(如开发、测试、培训)的匿名化数据集,这通常是不可逆的。
- 动态数据脱敏(DDM): 在查询时实时对敏感数据进行脱敏,向非授权用户或非生产环境呈现伪造或加密的数据,不改变数据库中的原始数据。
- 令牌化与假名化: 用非敏感的替代品(令牌)或假名替换敏感数据,只有通过安全的映射才能重新识别。
5. 安全监控、审计与分析
了解数据访问活动并检测可疑行为。
- 全面审计: 记录大数据生态系统中所有数据访问、修改和管理活动。
- 行为分析(UBA/UEBA): 使用机器学习分析用户和实体行为,建立基线,并检测可能表明内部威胁或账户被盗用的异常活动。
- 威胁检测与告警: 识别并告警潜在的安全事件,例如未经授权的数据访问尝试、数据泄露或策略违规。
- 合规性报告: 生成详细的审计追踪和报告,以证明符合各种法规要求。
6. 数据防泄漏(DLP)
防止敏感数据离开受控环境。
- 内容检测: 检查传输中(网络、电子邮件)和静态存储中(存储)的数据内容中是否存在敏感信息。
- 策略执行: 阻止或告警未经授权的敏感大数据传输、复制或共享尝试。
7. 隐私增强技术(PETs)
在保留隐私的同时,实现数据利用的先进技术。
- 同态加密: 允许在加密数据上进行计算而无需解密。
- 安全多方计算(MPC): 使多方能够在不泄露各自输入的情况下共同计算函数。
- 差分隐私: 为聚合数据添加噪声以防止重新识别,同时保持统计准确性。
二、大数据保护产品方案推荐
选择合适的大数据保护解决方案通常取决于你现有的基础设施、云策略以及具体的合规性需求。以下是一些产品类别和值得关注的厂商:
1. 集成式数据安全平台(DSP)/ 数据安全态势管理(DSPM)
这些平台旨在提供对各种数据存储的数据安全统一视图和控制,通常侧重于发现、分类、访问治理和风险洞察。
- 原点安全数据安全平台uDSP: 提供数据访问层,包括数据发现与分类、实时数据活动审计监控、访问控制、风险分析和数据脱敏、api 数据安全。对于异构数据库环境来说,这是一个强大的选择。
- IBM Security Guardium: 数据库安全领域的长期领导者,Guardium 将其能力扩展到大数据环境,提供强大的审计、实时保护、漏洞管理和敏感数据发现与分类。
- 奇安信: 提供全面大数据安全解决方案,作为其“奇安天盾”平台的一部分,涵盖大数据平台的分类、DLP、加密、数据库审计和行为分析。
- 安恒信息: 专注于数据安全,其产品如 AI 驱动的数据安全管理平台 (AiDSC) 包含了大数据资产发现、分类和安全控制功能。
2. 云原生数据安全解决方案
对于利用公共云大数据服务(如 AWS S3、阿里云、腾讯云、华为云等)的组织来说,云原生安全产品或云无关平台至关重要。
- 云服务提供商原生服务 (AWS、阿里云、华为云等):
- AWS: Amazon Macie(敏感数据发现)、AWS KMS(密钥管理)、AWS Lake Formation(数据湖细粒度访问控制)以及各种加密选项。
- 华为云/阿里云等:通常包含强大的数据发现、敏感数据映射和风险识别功能,适用于云大数据存储,但对于跨云数据的管控缺乏统一策略跟方案。
在选择大数据保护产品时,请务必考虑贵组织的 具体风险状况、合规义务、现有技术栈和预算。通常,选择能够为大数据生命周期提供全面保护的集成平台,而非依赖于零散的单点解决方案,会更有益。你对其中某个特定的能力或者某类产品更感兴趣吗?我们可以进一步探讨。