HDOJ 题目1995汉诺塔V(递推)

本文介绍了一个经典的递归问题——汉诺塔,并提供了一种计算特定盘子移动次数的方法。通过输入盘子总数和特定盘号,可以计算出该盘子在解决汉诺塔问题时所需的最少移动次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



汉诺塔V

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2518    Accepted Submission(s): 1497


Problem Description
用1,2,...,n表示n个盘子,称为1号盘,2号盘,...。号数大盘子就大。经典的汉诺塔问
题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于
印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小
顺序摞着64片黄金圆盘。上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱
子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘。我们
知道最少需要移动2^64-1次.在移动过程中发现,有的圆盘移动次数多,有的少 。 告之盘
子总数和盘号,计算该盘子的移动次数.
 

Input
包含多组数据,首先输入T,表示有T组数据.每个数据一行,是盘子的数目N(1<=N<=60)和盘
号k(1<=k<=N)。
 

Output
对于每组数据,输出一个数,到达目标时k号盘需要的最少移动数。
 

Sample Input
  
2 60 1 3 1
 

Sample Output
  
576460752303423488 4
 

Author
Zhousc@ECJTU
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   2511  2184  2175  2587  1222 
 ac代码
#include<stdio.h>
#include<string.h>
__int64 a[61];
void fun()
{
    int i;
    a[0]=0;
    a[1]=1;
    for(i=2;i<61;i++)
        a[i]=a[i-1]*2;
}
int main()
{
    int t;
    fun();
    scanf("%d",&t);
    while(t--)
    {
        int n,m;
        scanf("%d%d",&n,&m);
        printf("%I64d\n",a[n-m+1]);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值