1. 小波发展
自从近两百年前Joseph Fourier在研究热力学问题提出Fourier分析以后,长期以来许多数学家一直在寻找更广泛函数空间的性能更好的基底函数族,工程技术领域也一直在寻找更好的时频分析方法,但收获甚微。
1984年法国的年轻的地球物理学家Jean Morlet在进行石油勘探的地震数据处理分析时与法国理论物理学家A.Grossman一起提出了 小波变换(wavelet transform, WT)的概念并定义了小波函数的伸缩平移系:
但并没有受到学术界的重视。直到1986年法国大数学家Yves Meyer构造出平方可积空间L2的规范正交基——二进制伸缩平移系:
1987年正在读硕士的Stephane Mallat将自己熟悉的图像处理的塔式算法引入小波分析,提出多分辨分析的概念和构造正交小波的快速算法——Mallat算法。
1988年法国女科学家Inrid Daubechies构造出具有紧支集的正交小波基——Daubechies小波。
1990年美籍华裔数学家崔锦泰和武汉大学的数学教授王建忠又构造出基于样条函数的单正交小波函数——样条小波。1992年Daubechies在美国费城举行的CBMS-NFN应用数学大会上作了著名的《小波十讲Ten Lectures on Wavelets》报告,掀起了学习与应用小波的高潮。
1994年Wim Swelden提出了一种不依赖于Fourier变换的新的小波构造方法—— 提升模式(lifting scheme),也叫第二代小波或整数小波变换。连续小波变换
连续小波变换(CWT = Continuous wavelet transform)的定义为:
离散小波变换
将连续小波变换的缩放因子a离散化,得到二进小波变换;再将其平移因子b也离散化,就得到离散小波变换。
2. 小波变换
在JPEG 2000的核心编码系统中,对有损压缩采用