模拟退火算法matlab代码

本文介绍了如何使用MATLAB编写一个简单的模拟退火算法,用于求解优化问题,包括目标函数、变量范围、初始解、温度控制和Metropolis准则的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模拟退火(Simulated Annealing, SA)算法是一种概率优化算法,它受到冶金学中的退火过程的启发。以下是使用 MATLAB 编写的模拟退火算法的简单示例,用于解决一个优化问题:

function [x_min, f_min, T, x, f] = simulated_annealing(objective, lb, ub, x0, T0, alpha, max_iter)
    % 目标函数
    % objective: 目标函数,例如:'@(x) (x-3)^2'
    % lb: 下界,列向量,包含每个变量的下界
    % ub: 上界,列向量,包含每个变量的上界
    % x0: 初始解,列向量
    % T0: 初始温度
    % alpha: 冷却率
    % max_iter: 最大迭代次数

    % 初始化参数
    x = x0;
    f = feval(objective, x);
    f_min = f;
    x_min = x;
    T = T0;
    [x, f] = objective(x); % 计算初始函数值

    % 模拟退火过程
    for k = 1:max_iter
        % 产生一个新的解
        delta_x = rand(1, length(x)) * (ub - lb) + lb;
        delta_f = feval(objective, delta_x) - f;

        % 根据 Metropolis 准则决定是否接受新解
        if delta_f < 0 || rand() < exp(-delta_f / T)
            x = delta_x;
            f = feval(objective, x);
            
            % 更新最佳解
            if f < f_min
                x_min = x;
                f_min = f;
            end
        end

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

youyouxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值