和为K的子数组

本文介绍了一种利用哈希表优化算法解决题目,通过计算前缀和并存储出现频率,将时间复杂度从O(n^2)降低到O(n),空间复杂度从O(1)提升到O(n),提高了查找以i结尾和为k连续子数组个数的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址
在这里插入图片描述

考虑以 i 结尾和为 k 的连续子数组个数,我们需要统计符合条件的下标 j 的个数,其中 0≤j≤i 且 [j…i] 这个子数组的和恰好为 k

<!--枚举    
时间复杂度是O(n^2),空间复杂度是O(1)
-->
public class Solution {
    public int subarraySum(int[] nums, int k) {
        int count = 0;
        for (int start = 0; start < nums.length; ++start) {
            int sum = 0;
            for (int end = start; end >= 0; --end) {
                sum += nums[end];
                if (sum == k) {
                    count++;
                }
            }
        }
        return count;
    }
}

定义 pre[i] 为[0…i] 里所有数的和,则pre[i]=pre[i−1]+nums[i]

那么「[j…i] 这个子数组和为 k 」这个条件我们可以转化为pre[i]−pre[j−1]==k

简单移项可得符合条件的下标 j 需要满足

pre[j-1] == pre[i] - k

我们考虑以 i 结尾的和为 k 的连续子数组个数时只要统计有多少个前缀和为 pre[i]−k 的 pre[j] 即可,我们建立哈希表 mp,以和为键,出现次数为对应的值,记录 pre[i] 出现的次数,从左往右边更新 mp 边计算答案,那么以 i结尾的答案 mp[pre[i]−k] 即可在 O(1) 时间内得到。最后的答案即为所有下标结尾的和为 k 的子数组个数之和

需要注意的是,从左往右边更新边计算的时候已经保证了mp[pre[i]−k] 里记录的pre[j] 的下标范围是0≤j≤i 。同时,由于pre[i] 的计算只与前一项的答案有关,因此我们可以不用建立 pre 数组,直接用pre 变量来记录 pre[i−1] 的答案即可

<!--前缀和+哈希优化 
时间复杂度是O(n),空间复杂度是O(n)
-->
public class Solution {
    public int subarraySum(int[] nums, int k) {
        int count = 0, pre = 0;
        HashMap < Integer, Integer > mp = new HashMap < > ();
        mp.put(0, 1);
        for (int i = 0; i < nums.length; i++) {
            pre += nums[i];
            if (mp.containsKey(pre - k)) {
                count += mp.get(pre - k);
            }
            mp.put(pre, mp.getOrDefault(pre, 0) + 1);
        }
        return count;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

四美

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值