考虑以 i 结尾和为 k 的连续子数组个数,我们需要统计符合条件的下标 j 的个数,其中 0≤j≤i 且 [j…i] 这个子数组的和恰好为 k
<!--枚举
时间复杂度是O(n^2),空间复杂度是O(1)
-->
public class Solution {
public int subarraySum(int[] nums, int k) {
int count = 0;
for (int start = 0; start < nums.length; ++start) {
int sum = 0;
for (int end = start; end >= 0; --end) {
sum += nums[end];
if (sum == k) {
count++;
}
}
}
return count;
}
}
定义 pre[i] 为[0…i] 里所有数的和,则pre[i]=pre[i−1]+nums[i]
那么「[j…i] 这个子数组和为 k 」这个条件我们可以转化为pre[i]−pre[j−1]==k
简单移项可得符合条件的下标 j 需要满足
pre[j-1] == pre[i] - k
我们考虑以 i 结尾的和为 k 的连续子数组个数时只要统计有多少个前缀和为 pre[i]−k 的 pre[j] 即可,我们建立哈希表 mp,以和为键,出现次数为对应的值,记录 pre[i] 出现的次数,从左往右边更新 mp 边计算答案,那么以 i结尾的答案 mp[pre[i]−k] 即可在 O(1) 时间内得到。最后的答案即为所有下标结尾的和为 k 的子数组个数之和
需要注意的是,从左往右边更新边计算的时候已经保证了mp[pre[i]−k] 里记录的pre[j] 的下标范围是0≤j≤i 。同时,由于pre[i] 的计算只与前一项的答案有关,因此我们可以不用建立 pre 数组,直接用pre 变量来记录 pre[i−1] 的答案即可
<!--前缀和+哈希优化
时间复杂度是O(n),空间复杂度是O(n)
-->
public class Solution {
public int subarraySum(int[] nums, int k) {
int count = 0, pre = 0;
HashMap < Integer, Integer > mp = new HashMap < > ();
mp.put(0, 1);
for (int i = 0; i < nums.length; i++) {
pre += nums[i];
if (mp.containsKey(pre - k)) {
count += mp.get(pre - k);
}
mp.put(pre, mp.getOrDefault(pre, 0) + 1);
}
return count;
}
}