数据挖掘算法和实践(六):seaborn数据可视化探索(tips 数据集)

本文介绍了使用seaborn进行数据可视化的方法,包括数据读取、分布图、数量统计图、散点图、联合分布图、箱线图等。seaborn作为matplotlib的扩展库,提供了丰富的图表类型,帮助分析者更好地理解数据分布和关系。通过实例展示了如何利用seaborn的多种图形来探索tips数据集,以发现数据的价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

seaborn是一个面向对象作图工具,直译是海洋生物,tips 是小费数据集(seaborn自带),本次使用seaborn学习数据分布的探索,在遇到新的数据集合时候,分析问题不至于无从下手;关于使用seaborn,参考官网 http://seaborn.pydata.org/index.html 

python数据分析的可视化库有:

  • matplotlib 是可视化的必备技能库,比较底层,api很多,学起来不太容易。

  • seaborn 是建构于matplotlib基础上,能满足绝大多数可视化需求。

  • matplotlib和seabron是静态可视化库,pyecharts有很好的web兼容性,可以进行可视化动态效果。

import seaborn as sns
import pandas as pd 
import matplotlib.pyplot as plt
import numpy as np

一、数据读取

# 修改baseUrl的路径即可完成数据读取修改
baseUrl="C:\\Users\\71781\\Desktop\\2020\\ML-20200422\\seaborn_sklearn\\"
# tips=sns.load_dataset("tips")
tips=pd.read_csv("tips.c
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A叶子叶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值