在机器学习和深度学习的实验中,确保实验的可重复性是非常重要的。下面定义的set_random_seed(seed)
函数的主要目的是设置随机种子以确保代码的随机性操作(如参数初始化、数据集分割、随机数据增强等)在不同运行之间是可重复的。这使得其他研究人员或开发者可以复现相同的实验结果,同时也便于调试和优化模型。
函数详解
def set_random_seed(seed):
"""Set random seeds."""
random.seed(seed)
np.random.seed(seed)
torch