
Flink
文章平均质量分 97
本专栏旨在系统讲解 Apache Flink 的核心原理与实战应用,覆盖流批一体架构、事件时间与窗口机制、状态管理、一致性保障(Exactly-Once)、Flink SQL、CEP、与Kafka集成、运维与调优等关键内容,帮助读者从入门到精通掌握实时计算利器。
讲文明的喜羊羊拒绝pua
拥有8年Java后端与大数据平台开发经验,曾在大疆等知名公司主导核心平台建设,具备丰富的架构设计与落地能力。擅长调度系统、存算分离湖仓架构与组件容器化,推动多个系统实现高可用、易扩展。在技术上,深入掌握Java并发编程与JVM调优,熟悉Spark、Flink、Kafka等大数据组件,具备DS、Amoro、Celeborn等开源项目贡献经验,具备强实战力与技术深度。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Flink实时计算引擎-02 并行度配置、DataStream编程模型、转换算子及实战案例
本文介绍了Apache Flink中并行度和Slot的核心概念。Flink任务通过TaskManager执行,每个TaskManager提供多个Slot作为资源子集,Slot数量通常与CPU核心数匹配。并行度指任务实例的线程数,可通过算子、环境、客户端、系统四个级别设置。文章详细演示了各级别并行度设置方法,并提供了本地调试并行度的代码示例,包括Web UI监控界面。此外,还概述了DataStream编程模型和常见数据源(文件、Socket、集合、自定义)的使用方式,帮助开发者理解Flink任务调度和资源配置原创 2022-04-02 09:11:17 · 783 阅读 · 0 评论 -
Flink实时计算引擎-01 核心概念、架构解析、安装部署与入门实战
Apache Flink是一个分布式大数据处理引擎,能够对有界和无界数据流进行有状态计算。它支持批流统一处理,具有低延迟、高吞吐的特点,并保证Exactly-once语义。Flink可以部署在YARN、Mesos、Kubernetes等集群环境中,能处理万亿级事件和TB级状态数据。其核心架构包括JobManager(Master节点)和TaskManager(Worker节点),采用内存优化设计和异步检查点机制确保高性能和容错性。Flink广泛应用于实时智能推荐、欺诈检测、复杂事件处理、实时数仓等场景,通过原创 2022-03-23 23:02:14 · 3074 阅读 · 0 评论