总时间限制:
1000ms
内存限制:
65536kB
描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。
比如,如下4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
输入
输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。
输出
输出最大子矩阵的大小。
样例输入
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
样例输出
15
思路:参考最大和问题,做垂直的前缀和,对首尾行进行枚举,时间复杂度为o(n³)
代码:
#include<bits/stdc++.h>
using namespace std;
int n,m,a[105][105],sum[105][105],b[105],ans=-999;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&a[i][j]);
sum[j][i]=sum[j][i-1]+a[i][j];
}
}
for(int i=1;i<=n;i++){
for(int j=i;j<=