在智能制造系统中,一个典型的AI Agent落地应用案例可以是设备监控与故障预测。以下是一个简单的Python代码示例,展示了如何实现这个应用场景。
首先,我们需要安装一些必要的Python库,如`numpy`、`pandas`、`sklearn`和`tensorflow`。可以使用以下命令进行安装:
```bash
pip install numpy pandas sklearn tensorflow
```
接下来,我们编写一个简单的AI Agent,用于监控智能制造系统中的设备状态并预测潜在故障。
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
# 模拟数据生成,用于训练和测试
np.random.seed(0)
n_samples = 1000
X = np.random.rand(n_samples, 10) # 10个特征
y = 2 + 3 * X + np.random.randn(n_samples)
# 数据预处理
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_spl