几道之旅
日更一年,静待花开
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
MiniMind:从零构建超轻量语言模型,3元成本+2小时实现大模型自由
MiniMind以"大道至简"的理念,打破了大模型开发的高门槛壁垒,让更多人能够亲身体验从0到1构建语言模型的乐趣与挑战。无论是AI初学者想要了解大模型的工作原理,还是开发者希望快速验证自己的想法,MiniMind都是一个值得深入研究的优秀项目。正如项目所说:"用乐高拼出一架飞机,远比坐在头等舱里飞行更让人兴奋!"在MiniMind的世界里,每个人都能成为大模型的创造者。原创 2025-08-06 15:14:16 · 395 阅读 · 0 评论 -
【学习过程记录】【czsc】1、安装
我不想搜了,想直接用我的方法来解决这个问题。直接更新anaconda,结果自然是可以的。但是,不得不说,annaconda的安装是真的慢啊,我周三装的,装好已经是周四了。一般软件装完,都会有个功能测试,但czsc的文档确实一般,这一块就比较缺失。关于czsc的安装呢,官方也是给出了多种方案,我们只要有一种能成功就好。为此呢,我也是花了一点时间装了一个python3.13。作者强调,python必须是大于等于3.8。直接来到了python3.13。咱姑且认为这样就算成功了吧。笑死我吧,这还能报错。原创 2025-07-30 23:26:12 · 47 阅读 · 0 评论 -
docker部署neo4j,设置密码。Neo.ClientError.Security.Unauthorized: The client is unauthorized due to authenti
卷,设置NEO4J_AUTH将不会起作用,因为该数据库已经配置了身份验证。Neo4j Docker 服务将会启动,但您需要使用已与该数据库关联的用户名和密码才能登录。这里,使用了环境变量NEO4J_AUTH,设置了用户名为neo4j,密码为neo4jneo4j。这个命令还是比较全的,包括设置密码,设置端口,挂载外部的数据目录等。原因嘛,就是使用docker创建的neo4j,登录不上。把👆提到的外挂的数据,都清空了,再重新来一遍。有一种情况下,这样设置密码,并不会成功。如果不出意外,目前就算大功告成了。原创 2025-07-24 18:13:52 · 58 阅读 · 0 评论 -
postgresql导入导出数据;pg_restore: error: did not find magic string in file header
就是说,使用pg_restore都是对整个数据库进行恢复的,所以你不能指定数据库名。无法使用DBeaver之后,数据库表的导入导出也变得异常麻烦。使用psql而非pg_restore。而一旦你不适用数据库名,它又会报错。原创 2025-07-22 17:50:11 · 73 阅读 · 0 评论 -
postgresql使用记录 SCRAM authentication requires libpq version 10 or above
PostgreSQL 服务器启用了更安全的 SCRAM-SHA-256 密码加密方式(自 PostgreSQL 10 起默认支持),但客户端 libpq 库版本低于 10,无法支持此认证协议。由于某种原因,无法直接使用dbeaver连接数据库了。所以只能使用命令行了,被迫学了一下。起一个container,然后就可以在容器里链接你的远程数据库了。打了上面的指令后,一般情况下,你就直接进入了目标的数据库。命令行工具中与数据库管理相关的常用命令详解,涵盖。咱直接用docker解决。就特别爽,特别丝滑。原创 2025-07-22 17:35:53 · 85 阅读 · 0 评论 -
探索 Mem0:为 AI 注入智能记忆的创新力量
Mem0(“mem-zero”)是一个智能记忆层,旨在增强 AI 助手和代理的持久、个性化记忆能力。它使 AI 系统能够记住用户的偏好,适应个体需求,并随着时间的推移不断学习,非常适合用于客户支持聊天机器人、AI 助手和自主系统等场景。Mem0 为 AI 应用提供了一个强大而灵活的记忆层解决方案,通过其卓越的性能、丰富的功能和广泛的集成能力,能够帮助开发者构建更加智能、个性化的 AI 系统。无论是开源爱好者还是企业开发者,都可以从 Mem0 中受益,推动 AI 技术的进一步发展。原创 2025-07-21 15:30:45 · 430 阅读 · 0 评论 -
探索 Stagehand:AI 浏览器自动化框架的新境界
Stagehand 是一款由开发的 AI 浏览器自动化框架。从其README中可以看到,它提供了一个灵活的解决方案,让开发者可以在代码和自然语言之间自由选择,以实现浏览器自动化任务。Stagehand 作为一款创新的 AI 浏览器自动化框架,为开发者提供了一个灵活、高效的解决方案。它结合了代码和自然语言的优势,让开发者可以根据需要选择最合适的方式来实现浏览器自动化任务。同时,它不断更新和改进,拥有活跃的社区支持,是开发者进行浏览器自动化开发的一个不错选择。原创 2025-07-18 10:15:00 · 338 阅读 · 0 评论 -
探索 Qlib:微软开源的 AI 量化投资平台
Qlib 是一个开源的、面向人工智能的量化投资平台,其目标是在量化投资领域中,充分发挥人工智能技术的潜力,为研究提供支持,并创造实际价值。从想法的探索到生产的实施,Qlib 支持多种机器学习建模范式,包括监督学习、市场动态建模和强化学习等。它涵盖了数据处理、模型训练、回测等完整的机器学习流程,覆盖了量化投资的全链条,包括阿尔法挖掘、风险建模、投资组合优化和订单执行等。如果自动工作流不适合某些研究人员的需求,Qlib 还提供了模块化的接口,允许研究人员通过代码构建自己的工作流。例如,可以参考。原创 2025-07-17 16:05:06 · 1035 阅读 · 0 评论 -
npm install failed如何办?
上网搜索,说是网络配置不太对。按照如下几步,保证解决问题。在运行npm install指令时,出现如下错误。原创 2025-07-15 18:01:20 · 419 阅读 · 0 评论 -
代码:Python如何实时获取沪深300的成分股
代码:Python如何实时获取沪深300的成分股。原创 2025-07-14 22:25:12 · 73 阅读 · 0 评论 -
electron-packager报错Failed to locate module “foreground-child“ from
本文总结了electron打包成exe时遇到的常见问题及解决方案。主要问题包括:使用cnpm安装依赖时导致的模块缺失循环报错,建议改用npm安装;遇到rcedit执行失败时,可删除临时文件夹重试;npm安装报错时,可清除缓存并删除node_modules后重试。文章提供了具体报错信息和对应的解决步骤,帮助开发者顺利完成electron应用打包。原创 2025-07-14 08:30:00 · 293 阅读 · 0 评论 -
探索 Awesome MCP Clients:解锁 AI 模型新能力
MCP 是一个开放协议,它通过标准化的服务器实现,使 AI 模型能够安全地与本地和远程资源进行交互。这个协议的出现,为 AI 模型的应用拓展了更多可能性,例如文件访问、数据库连接、API 集成等。通过使用 MCP,开发者可以更轻松地为 AI 模型添加各种上下文服务,从而提升其智能水平和实用性。是一个精心策划的列表,收集了众多优秀的 MCP 客户端。这些客户端涵盖了各种类型,包括命令行工具、Web 应用、桌面应用和移动应用等,适用于不同的使用场景和需求。原创 2025-07-11 09:00:00 · 44 阅读 · 0 评论 -
探索Alibaba-NLP/WebAgent:迈向智能信息搜索新时代
WebAgent是由阿里巴巴通义实验室构建的用于信息搜索的工具集。项目提供了一系列模型和数据集,包括WebSailor、WebDancer - 32B、WebWalkerQA等。这些模型和数据集在信息搜索和网页遍历等任务中展现出了卓越的性能。同时,项目还提供了相应的论文和在线演示,方便用户进一步了解和使用。WebSailor是一个专门为大型语言模型(LLM)代理设计的完整后训练方法,旨在让代理具备复杂网络导航和信息搜索任务所需的高级推理能力。原创 2025-07-10 17:13:34 · 990 阅读 · 0 评论 -
探索 12-Factor Agents:构建可靠 LLM 应用的新范式
12-Factor Agents 项目为构建可靠的 LLM 应用提供了一套系统的原则和方法。通过遵循这些原则,开发者可以更好地应对在开发过程中遇到的挑战,提高应用的质量和性能。无论是对于新手开发者还是有经验的工程师,这些原则都具有重要的参考价值。如果你对构建 LLM 应用感兴趣,不妨深入研究这个项目,相信你会从中获得很多启发。希望通过这篇博客,你对 12-Factor Agents 项目有了更深入的了解。让我们一起探索这个领域,共同推动 LLM 应用的发展。原创 2025-07-08 14:54:09 · 341 阅读 · 0 评论 -
【K线训练软件研发历程】【日常记录向】1.K线滑动窗口
界面直接采用electron,等开源后,可以直接挂release,用户下载安装包后,一键安装,一键运行,降低使用门槛。整个项目几乎都是AI搭的,我其实nodejs也不熟,也没使上太大劲。👆相当于有个hello world了。数据下载还是用的老朋友,pytdx。原创 2025-07-07 23:16:18 · 133 阅读 · 0 评论 -
OmniTools:一站式在线工具集,让日常任务变得轻松简单
OmniTools 是由开发的开源项目,目前版本为 0.4.0。该项目的目标是提供一个简单易用、功能丰富的在线工具平台,帮助用户简化日常任务。所有文件都在客户端进行处理,不会上传到服务器,确保了用户数据的安全性和隐私性。此外,OmniTools 的 Docker 镜像非常轻量级,仅为 28MB,部署速度快,易于自托管。OmniTools 是一个功能强大、易于使用的在线工具平台,为用户提供了一站式的解决方案。它不仅提供了丰富多样的工具,还注重数据安全和用户隐私。原创 2025-07-07 16:34:56 · 470 阅读 · 0 评论 -
0基础尝试cline创建electron项目(据说以后不需要开源代码了,只需要开源提示词就可以)
本文介绍了使用Electron框架创建桌面应用的准备过程。首先创建项目文件夹并在VS Code中打开,然后描述需求:主界面包含三个按钮,点击每个按钮会打开新窗口且每个窗口都有关闭功能。接着通过npm初始化项目并安装Electron依赖包(使用cnpm加速)。虽然AI自动完成了部分配置,但最终效果存在bug,窗口关闭功能未完全实现。整个流程展示了从项目初始化到基础功能搭建的步骤,为后续调试留下了改进空间。原创 2025-07-06 08:02:44 · 121 阅读 · 0 评论 -
LibreChat:开源AI聊天平台的革新者
LibreChat是一个将多种AI模型集成在一起的聊天平台,它结合了OpenAI的ChatGPT等先进技术,同时融入了许多创新的功能。该项目的目标是为用户提供一个强大、安全且易于使用的AI对话环境,无论是个人开发者还是企业用户,都能从中受益。LibreChat以其丰富的功能、灵活的配置和活跃的开源社区,为用户提供了一个强大的AI聊天平台。无论是对于开发者来说,它是一个探索和实践AI技术的理想选择;对于普通用户来说,它是一个方便、实用的AI对话工具。原创 2025-07-04 10:48:48 · 229 阅读 · 0 评论 -
【知识图谱构建系列7】:结果评价(2)
本文介绍了对三元组抽取结果进行清洗和评价的过程。作者针对未开源的清洗代码自行实现了一个处理脚本,该脚本能够从大模型生成结果中提取语义图部分,并自动修复格式问题(如补全缺失的"]]")。清洗后的数据保留了合规的三元组,过滤了不合格内容。在评价环节,使用eval.py脚本对比预测结果与标准答案时遇到网络超时问题,通过设置镜像环境变量解决。最终成功获取了模型的三元组抽取性能评估结果。整个过程展示了从数据清洗到模型评估的完整流程。原创 2025-07-03 23:18:05 · 49 阅读 · 0 评论 -
MediaCrawler:强大的自媒体平台爬虫工具
MediaCrawler是一个功能强大的多平台自媒体数据采集工具,其开源仓库地址为。该工具支持小红书、抖音、快手、B站、微博、贴吧、知乎等主流平台的公开信息抓取。原创 2025-07-03 17:40:24 · 767 阅读 · 0 评论 -
【知识图谱构建系列7】:结果评价(1)
本文回顾了知识图谱构建项目的进展,目前已在Mistral模型上实现三元组提取功能,并将结果保存至指定文件。发现两大问题:一是输出路径硬编码需要手动修改;二是模型存在严重幻觉和重复输出现象。评估阶段遇到脚本兼容性问题(Windows系统无法直接运行.sh文件)和格式不规范导致的报错。作者指出需要自行编写代码来处理原始提取结果的格式规范化问题,为后续论文研究做准备。(150字)原创 2025-07-01 00:09:22 · 97 阅读 · 0 评论 -
【知识图谱提取】【阶段总结】【LLM4KGC】LLM4KGC项目提取知识图谱推理部分
LLM4KGC是一个基于大模型的知识图谱抽取项目,包含微调、推理和评价三个独立模块。项目结构简单清晰,特别适合入门学习。作者重点探索了推理模块的实现,通过预训练模型对输入文本进行知识三元组抽取,并提供了不同提示策略(零样本、单样本等)的代码实现。该项目的评价脚本可直接用于后续实验效果验证,为知识图谱抽取研究提供了便捷的基础工具。原创 2025-06-21 23:12:03 · 90 阅读 · 0 评论 -
modelscope设置默认模型路径
摘要: ModelScope模型默认存储在C盘(~/.cache/modelscope/hub/),易导致空间不足。可通过以下方式修改路径: 永久生效:设置环境变量MODELSCOPE_CACHE(如D:\models\),适用于所有下载方式。 迁移缓存:手动移动已有模型文件至新路径,释放C盘空间。 临时指定:代码中通过cache_dir参数单次修改存储位置。 Windows/Linux/macOS系统均支持,修改后需重启终端生效,建议优先使用环境变量方案彻底解决C盘占用问题。原创 2025-06-21 22:52:55 · 308 阅读 · 0 评论 -
Automatisch:开源的工作流自动化利器
Automatisch 是一个商业自动化工具,它允许用户连接不同的服务,如 Twitter、Slack 等,从而实现业务流程的自动化。其核心优势在于,它不需要用户具备任何编程知识,就可以轻松创建和管理工作流。同时,Automatisch 还处于早期开发阶段,尽管团队尽力避免引入重大变更,但在 v1 版本发布之前,使用时仍需保持谨慎。Automatisch 为企业和个人提供了一个开源、灵活且安全的工作流自动化解决方案。它不仅降低了自动化的门槛,让非技术人员也能轻松上手,还通过社区的力量不断发展和完善。原创 2025-06-19 14:46:14 · 175 阅读 · 0 评论 -
Jan:重塑本地AI交互,打造隐私优先的桌面智能助手
Jan的诞生源于一个朴素的理念:在数据共享泛滥的时代,用户应当拥有“只与电脑对话”的权利。作为一款全离线运行的桌面AI助手,Jan无需联网即可加载并运行大型语言模型(LLMs),从根本上杜绝了对话内容上传云端的风险。项目采用Apache 2.0开源协议,代码仓库结构清晰,包含core(核心逻辑)、extensions(扩展模块)、src-tauri(桌面应用底层)等核心目录,展现出模块化设计的工程美感。Llama.cpp:底层模型推理引擎,支持Llama、Gemma等主流LLM本地运行Tauri。原创 2025-06-18 14:01:42 · 535 阅读 · 0 评论 -
【知识图谱构建系列6】:借了张显卡先跑着
本文介绍了在Linux环境下运行Mistral模型的实践过程。作者利用A100显卡成功运行了Mistral 7B开源大语言模型,该模型以70亿参数实现高效性能,支持128K tokens长上下文处理。文章提供了修改后的Python代码实现,包括模型加载、提示生成和结果输出等功能模块,展示了如何使用modelscope库下载和运行模型,并记录了不同提示类型下的处理时间。实验涉及零样本提示和语义图转换任务,体现了Mistral模型在知识图谱构建中的应用潜力。原创 2025-06-17 23:38:20 · 82 阅读 · 0 评论 -
探索 YouTube 字幕转录神器:youtube - transcript - api
是一个用 Python 编写的 API,它允许用户轻松地获取 YouTube 视频的字幕或转录内容。该项目由 Jonas Depoix 开发并维护,开源在 GitHub 上(项目地址),采用 MIT 许可证,这意味着开发者可以自由地使用、修改和分发这个项目。是一个功能强大、易于使用的工具,为开发者和研究人员提供了一种便捷的方式来获取 YouTube 视频的转录内容。无论是用于学术研究、内容创作还是数据分析,这个 API 都能帮助你节省大量的时间和精力。原创 2025-06-17 10:26:24 · 638 阅读 · 0 评论 -
【知识图谱构建系列5】:使用modelscope下载模型
该文章分享了作者运行LLM4KGC开源项目代码的过程,主要描述了遇到的几个问题及解决方案。首先指出代码中存在低级错误(如字符串判断少写等号),随后在Windows环境下运行时遇到路径问题,通过简单修改解决。接着因无法使用HuggingFace而改用ModelScope加载模型,并展示了修改后的部分关键代码。整个过程体现了调试开源项目时常见的兼容性问题,以及通过简单调整解决问题的思路。文章以轻松吐槽的语气记录调试过程,最终实现代码正常运行。原创 2025-06-16 22:52:16 · 189 阅读 · 0 评论 -
【知识图谱构建系列4】zero-shot的具体代码实现
摘要:本文介绍了利用大语言模型(LLM)进行zero-shot知识图谱构建的技术方法。通过使用HuggingFace Transformers、PEFT和量化技术,实现了在消费级GPU上运行Mistral-7B等开源模型。核心代码展示了如何加载量化模型、构建提示模板、生成结构化三元组响应,并将结果批量保存。该方法无需特定领域训练,即可直接从文本中提取(主体|关系|客体)形式的知识,适用于知识图谱的冷启动构建和快速领域扩展。项目已开源,提供完整的实现代码和技术细节。原创 2025-06-15 23:55:40 · 47 阅读 · 0 评论 -
【知识图谱构建系列3】zero-shot的理念介绍
本文探讨了大语言模型(LLM)在零样本学习(zero-shot)知识图谱构建中的应用。测试显示,直接使用现成LLM进行三元组抽取的效果欠佳,与标准标注存在明显差距。作者对比了自定义提示词与LLM4KGC项目提供的提示词,并计划后续通过Python实现定量评估。实验数据来自WebNLG数据集,初步结果表明,当前zero-shot方法在关系抽取准确性方面仍有较大提升空间。研究为LLM在知识图谱构建领域的应用提供了实践参考。原创 2025-06-14 23:40:22 · 504 阅读 · 0 评论 -
【知识图谱构建系列2】LLM4KGC项目安装运行
本文介绍了LLM4KGC项目的环境配置与初步运行过程。首先通过pip安装了transformers、peft等必要的Python依赖库,并讨论了"-q"参数的作用。接着克隆项目代码后,重点分析了fine_tune.sh脚本内容,该脚本调用fine_tune_llms.py使用mistral模型进行微调。作者尝试在Windows PowerShell中运行脚本时遇到问题,展示了跨平台适配的常见挑战。文章最后表示将继续调试该问题,为后续的模型微调和推理步骤做准备。原创 2025-06-13 23:01:49 · 241 阅读 · 0 评论 -
【知识图谱构建系列1】数据集介绍
本文介绍了利用大语言模型(LLMs)实现从文本到知识图谱(Text-to-KG)自动化构建的研究项目LLM4KGC。该项目对比了零样本提示、少样本提示和微调训练三种方法在Llama2、Mistral、Starling等模型上的表现,并采用WebNLG数据集进行评估。有趣的是,WebNLG原本用于将三元组生成自然语言,而本项目则进行逆向任务——从文本中抽取三元组。研究为知识图谱构建提供了可复现的技术路径和评估基准,相关代码已开源。原创 2025-06-11 22:39:47 · 333 阅读 · 0 评论 -
RedditVideoMakerBot:一键自动化生成Reddit视频的神器
RedditVideoMakerBot代表了自动化内容生成的新范式——它打破了专业视频制作的技术壁垒,将创意表达的能力赋予每一个普通用户。项目成功将复杂工作流封装为简单命令,开发者只需关注内容策略而非技术细节。随着v4.0路线图中AI功能的整合,未来的内容创作将更加智能化。无论你是想建立个人品牌的内容创业者,还是研究传播学的技术爱好者,这个项目都值得加入你的技术栈。立即访问项目GitHub仓库,开启你的自动化内容创作之旅!原创 2025-06-06 09:00:00 · 67 阅读 · 0 评论 -
深入浅出 Scrapy:打造高效、强大的 Python 网络爬虫
作为 Python 爬虫领域的标杆框架,Scrapy 以其优雅的设计和强大的扩展能力,成为企业级数据采集的首选方案。无论是小型数据抓取任务还是分布式爬虫系统,Scrapy 都能提供专业级解决方案。进入它的世界,你会发现网络数据采集原来可以如此高效而优雅!提示:所有代码示例已在 Scrapy 2.11+ 版本验证通过让数据流动起来,让价值传递下去——Scrapy 正是你需要的利器!原创 2025-06-05 14:15:37 · 394 阅读 · 0 评论 -
docker部署redis(需要密码)。docker run --name redis -e REDIS_PASSWORD=‘abc123‘ -d redis:6 为什么不行?
Redis是一款高性能开源内存数据库,支持多种数据结构(字符串、哈希、列表等),可用作缓存、消息队列等场景。通过Docker可快速部署Redis,推荐使用Bitnami镜像支持密码配置(环境变量REDIS_PASSWORD)。Windows用户可通过微软提供的Redis客户端工具连接服务器。Python中通过redis-py库实现数据操作,支持基本键值存储、哈希表、列表等数据结构。生产环境建议开启密码保护并配置持久化存储。Redis凭借其高速读写和丰富功能,成为现代应用开发的重要组件。原创 2025-06-03 18:55:23 · 810 阅读 · 0 评论 -
python-pptx去除形状默认的阴影
本文介绍了如何通过Python代码去除PowerPoint中形状的默认阴影效果。核心方法是设置rectangle.shadow.inherit = False,这会创建一个空的效果列表中断样式继承。文章解析了阴影继承机制和底层XML操作原理,指出该方法会同时移除所有视觉效果,并提供了批量处理建议。最后提醒当前API对效果控制较粗,精细调整需直接操作XML结构。原创 2025-05-29 00:43:31 · 883 阅读 · 0 评论 -
Python生成ppt(python-pptx)N问N答(如何绘制一个没有背景的矩形框;如何绘制一个没有背景的矩形框)
本文介绍了如何使用python-pptx库进行PowerPoint自动化操作。主要内容包括:1) 安装方法;2) 创建空白PPT文件;3) 添加不同布局的幻灯片;4) 插入文本、图片、表格和图表;5) 设置动画和转场效果;6) 批量生成PPT;7) 绘制无背景或无边框矩形。通过代码示例演示了各种常见操作,适用于自动化报告生成等场景。原创 2025-05-28 17:56:59 · 524 阅读 · 0 评论 -
基于递归思想的系统架构图自动化生成实践
本文介绍了一个递归算法实现的Markdown到PPTX架构图自动转换系统。系统通过树形字典数据结构解析Markdown层级,采用深度优先遍历进行动态空间分配。关键技术包括三级弹性布局算法(全宽/等分/双列流式)、知乎视觉规范集成的样式体系,以及基于FastMCP框架的服务封装。系统支持自动化文档生成、动态配置展示等场景,提供调试建议、性能优化方案和错误处理机制,未来可扩展跨平台支持、智能布局等功能。代码已在GitHub开源。原创 2025-05-27 22:48:56 · 472 阅读 · 0 评论 -
实现tdx-hs300-mcp
实现了第一个MCP原创 2025-05-24 23:37:24 · 165 阅读 · 0 评论 -
pytdx数据获取:在线获取和离线获取(8年前的东西,还能用吗?)
本文介绍了Python库pytdx的使用方法。虽然GitHub上的项目看起来已停止维护,但该库仍可正常使用。文章展示了两种数据获取方式:1) 离线模式需安装客户端,通过配置路径读取本地分钟线数据;2) 在线模式通过API连接服务器获取实时数据。配置文件采用toml格式,包含TDX路径和API连接参数。原创 2025-05-23 22:55:09 · 605 阅读 · 0 评论