关于RAG检索增强的右侧优化方案——企业级应用中怎么提升RAG的检索准确度

 RAG最终的评判标准只有一个——召回精度,RAG所有的技术都是围绕着怎么更快更准确的召回数据。

RAG增强检索的核心指标只有一个——召回准确率;对于RAG技术来说,最重要的事情就是其召回数据的准确性;而怎么提升其召回准确率,方法只有两个,一个是左侧增强,一个是右侧增强。

所谓的左侧增强就是文档处理处理,怎么更好的处理复杂文档;而右侧增强就是召回侧的召回策略。

今天,我们就来讨论一下RAG的召回策略问题。

RAG的召回策略

数据召回本质上就是数据查询的一种方式,RAG比较特殊的一点就是不仅仅支持传统的字符匹配检索,同时支持基于向量计算的语义检索方式。

对RAG技术刚入门的人来说,召回方式很简单;不就是把用户问题通过嵌入模型进行向量化,然后把向量化的结果去向量数据库中进行匹配即可。

这种方式虽然没错,但其效果往往却不尽人意;因此,在企业级应用中会有更多的召回策略。

今天,我们就来列举几个常见的召回策略。

意图识别

对RAG应用来说有一个非常不可控的因素就是——用户;因为没人能控制用户的输入行为,因此这里就会有一个问题。就是用户的提问很不专业,比如说可能存在错别字,词不达意,或者一堆废话的长篇大论。

由于上述原因就会导致一个问题,由于用户的意图不清晰,导致进行语义匹配时,无法准确命中目标,甚至无法召回数据;这也是为什么有些新手会遇到明明库中有数据,但获取的结果却是空的。

因此,在用户提出问题时,我们首先要做的并不是直接embedding,然后进行相似度计算;而是应该把用户的输入提交给模型,让模型去优化用户的问题,以此来获取更精确的问题,然后提升召回准确度。

问题分解成多个子问题

当然,只对用户问题进行优化虽然能部分提升召回准确度,但有一个问题就是一个问题的覆盖范围有限;简单来说就是,同一句话可以有多个不同的表达方式,我们应该针对一个问题,从多个维度进行召回。

而这就需要用到问题分解的方法论,具体执行流程就是,把用户的问题输入给模型,然后让模型去理解问题,然后再围绕这个问题,再提出多个相似性的问题。

然后再通过这多个问题,从多个维度去数据库中进行召回,这样就能大大提升召回精度,并且能够覆盖更广的范围。

假设性文档召回——hyDE

所谓的假设性文档召回,就是大模型和人类一样,通过训练之后它有一定的知识基础;一些常识性问题,不需要RAG大模型也可以进行简单回答;因此,为了提升召回的准确率,我们可以先让大模型对用户的问题进行简单的回答,然后用大模型回答的结果当做条件(问题),去数据库中进行检索。

这种方式就类似于,你遇到一个问题,老师给你提供了一个大概的思路,然后你按照这个思路去找资料,解决问题;这样找资料的方向更明确,结果也更准确。

上下文召回

所谓的上下文召回就类似于大模型的记忆功能;我们都知道大模型是没有记忆的,因此需要把每轮对话给保存下来,然后作为上下文让大模型来回答问题。

同样,在RAG中也可以使用这种方式;举例来说,用户连续两个问题可能语义上并不相关,但内在上却有联系;比如说,用户的第一个问题是现在的油价情况,第二个问题是国产车的市场价;从语义上来说,两个问题关联性不大,毕竟一个是问油价,一个是问车价;但通过这两句话我们应该都能明白,用户大概率是想买车或者换车。

但对大模型来说,这两个问题的虽然有一定的关联性,但关联性并不强,因此如果把两个问题放一块;然后让模型根据这两个问题,去优化出一个新的相关性问题,这样准确度是不是会更高。

而这就是上下文召回,通过给模型提供上下文,让模型能够更好地生成新的问题或相关性问题,这样就能大概率提升召回的准确度。

rerank——重排序

通过以上多个召回策略召回数据之后,可能会面临一个问题那就是召回的数据太多,甚至很多可能是重复的数据;因此,我们需要对召回数据进行去重,并进行重排,以此来提升召回数据的准确性。

当然,虽然以上召回策略能够提升RAG的准确度,但同样也会带来很多问题,因此我们在使用的过程中需要多注意和调整。

比如说,由于召回的链路过长,导致响应慢的问题 ,因此我们需要控制模型的输出长度,以及生成问题的个数和问题长度等。比如拆分子问题时,只需要生成三到五条问题,且每个问题的长度不超过十个字等等。

当然,关于RAG的召回策略还有很多,我们可以在不同的业务场景中选择合适的召回策略;而以上几个策略,相对来说比较简单,且易于实现,成本可控。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型实战项目&项目源码👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
在这里插入图片描述

为什么分享这些资料?

只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

(👆👆👆安全链接,放心点击)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值