(1)Hadoop概述
Hadoop是一个开源的分布式计算和存储框架,用于处理大规模数据集(大数据)的并行处理。它由Apache基金会开发,核心设计灵感来自Google的MapReduce和Google文件系统(GFS)论文。Hadoop的核心优势在于其高容错性、横向扩展能力(可通过增加普通服务器扩展集群)以及低成本
(2)Hadoop核心部件
①HDFS架构
②YARN架构概述:Yet Another Resource Negotiator简称YARN ,另一种资源协调者,是Hadoop的资源管理器
③ MapReduce架构概述
④三者关系如下
(3)一些其他的和Hadoop配合的东西
(4)Hadoop运行环境搭建(开发重点)
①模板虚拟机环境准备
(1)安装模板虚拟机,IP地址192.168.10.100、主机名称hadoop100、内存4G、硬盘50G
(2)使用ping命令确定虚拟机可不可以上网,如果可以的话用yum安装epel-release(提供官方仓库之外的额外软件包)
yum install -y epel-release
(3)关闭防火墙,关闭防火墙开机自启
systemctl stop firewalld
systemctl disable firewalld.service
(4)创建atguigu用户,并修改atguigu用户的密码
(5)配置atguigu用户具有root权限,方便后期加sudo执行root权限的命令
(6)在/opt目录下创建文件夹,并修改所属主和所属组
(7)卸载虚拟机自带的JDK
(8)重启虚拟器
reboot
②克隆虚拟机准备好集群
(1)利用模板机hadoop100,克隆三台虚拟机:hadoop102 hadoop103 hadoop104
(2)修改克隆机IP,以下以hadoop102(其他也相似)举例说明
①修改克隆虚拟机的静态IP,命令如下:vim /etc/sysconfig/network-scripts/ifcfg-ens33
改动的点:
BOOTPROTO="static"
IPADDR=192.168.10.102
GATEWAY=192.168.10.2
DNS1=192.168.10.2
②查看Linux虚拟机的虚拟网络编辑器,编辑->虚拟网络编辑器->VMnet8(VMnet8 是 VMware 虚拟机软件中默认创建的 NAT(网络地址转换)模式虚拟网络,主要用于让虚拟机通过主机的网络连接访问外部互联网,同时保护虚拟机不直接暴露在外部网络中。)
③查看Windows系统适配器VMware Network Adapter VMnet8的IP地址
④保证Linux系统ifcfg-ens33文件中IP地址、虚拟网络编辑器地址和Windows系统VM8网络IP地址相同。
⑤修改克隆机主机名并配置Linux克隆机主机名称映射hosts文件(hosts 文件 是一个本地计算机上的纯文本文件,用于手动映射 主机名(域名) 到 IP 地址。它比 DNS(域名系统)查询更优先)
(3)在hadoop102安装JDK
①卸载现有JDK
②JDK导入到opt目录下面的software文件夹下面
③解压JDK到/opt/module目录下:tar -zxvf jdk-8u212-linux-x64.tar.gz -C /opt/module/
④配置JDK环境变量
⑤输入java version
看看有没有安装成功重启虚拟机sudo reboot
(4)在hadoop102安装Hadoop
①将hadoop-3.1.3.tar.gz导入到opt目录下面的software文件夹下面
②解压安装文件到/opt/module下面:tar -zxvf hadoop-3.1.3.tar.gz -C /opt/module/
③将Hadoop添加到环境变量
④输入hadoop version
看看有没有安装成功重启虚拟机sudo reboot
我们看一下Hadoop的目录:
以下是目录:
(5)Hadoop运行环境的本地模式运行:单机运行,只是用来演示一下官方案例。
①准备好两个txt文件放在wcinput文件夹里面(一个是奥巴马的演讲,一个是本人写的一个动漫的同人文(败犬女主太多了))
②转到/opt/module/hadoop-3.1.3
目录下面运行如下命令:
bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount wcinput/ ./result
(1) bin/hadoop jar
bin/hadoop:Hadoop 的可执行脚本,用于执行 Hadoop 相关的命令。
jar:表示要运行一个 Java JAR 包中的 MapReduce 程序。
(2)share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar
路径:指向 Hadoop 自带的示例程序 JAR 包(hadoop-mapreduce-examples-3.1.3.jar)。
作用:这个 JAR 文件包含多个 MapReduce 示例程序,如 wordcount、grep、pi 等。
(3)wordcount
程序名:指定运行 JAR 包中的 wordcount(词频统计)程序,功能是统计输入文件中每个单词的出现次数。
(4) wcinput/
输入路径:HDFS(Hadoop 分布式文件系统)上的输入目录,包含要处理的文本文件。如果路径是 wcinput/(带 /),表示这是一个目录,Hadoop 会读取该目录下的所有文件。如果路径是 wcinput(不带 /),可能指向单个文件(但 wordcount 通常处理整个目录)。
(5) ./result
输出路径:HDFS 上的输出目录,用于存储 wordcount 的计算结果。./result 表示 HDFS 当前用户目录下的 result 目录
该目录必须不存在,否则 Hadoop 会报错(防止覆盖已有数据)。
PS:以下是hadoop-mapreduce-examples-3.1.3.jar
里面的示例Hadoop程序
查看运行结果:
PS:如果自己实现一个Hadoop的程序并运行的话为以下步骤:
(1)写代码并存放在文件夹里面
package com.atguigu;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class InvertedIndex {
public static class InvertedIndexMapper extends Mapper<Object, Text, Text, Text> {
private Text word = new Text();
private Text fileInfo = new Text();
private long lineNumber = 0; // 用于跟踪行号
@Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
// 获取文件名
FileSplit fileSplit = (FileSplit) context.getInputSplit();
String fileName = fileSplit.getPath().getName();
// 行号自增
lineNumber++;
// 分割单词
StringTokenizer tokenizer = new StringTokenizer(value.toString());
while (tokenizer.hasMoreTokens()) {
String token = tokenizer.nextToken().toLowerCase().replaceAll("[^a-z]", "");
if (!token.isEmpty()) {
word.set(token);
fileInfo.set(fileName + "@" + lineNumber);
context.write(word, fileInfo);
}
}
}
}
// Reducer: 合并相同单词的所有 (文件名@行号)
public static class InvertedIndexReducer extends Reducer<Text, Text, Text, Text> {
private Text result = new Text();
@Override
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
StringBuilder sb = new StringBuilder();
for (Text val : values) {
sb.append(val.toString()).append("; ");
}
result.set(sb.toString());
context.write(key, result);
}
}
// 主函数
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "InvertedIndex");
job.setJarByClass(InvertedIndex.class);
job.setMapperClass(InvertedIndexMapper.class);
job.setReducerClass(InvertedIndexReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
实现的要求如下:
图中放在/root/桌面/Jar/src/main/java/com/atguigu里面
(2)依次运行如下命令:
cd /root/桌面/Jar/src/main/java //到项目根目录下面
javac -classpath $(hadoop classpath) com/atguigu/InvertedIndex.java //编译.java文件
jar cf invertedindex.jar com/atguigu/InvertedIndex*.class //打包成jar包
# 上传数据到HDFS
hadoop fs -mkdir /input
hadoop fs -put file1.txt file2.txt /input/
# 运行作业
hadoop jar invertedindex.jar com.atguigu.InvertedIndex /input /output //注意路径,一定要定位到对应的.class文件
# 查看结果
hadoop fs -cat /output/part-r-00000
PS:hadoop fs -的作用
运行结果如下:
(6)Hadoop的完全分布式运行模式(开发重点)
①编写集群分发脚本xsync
首先介绍两个命令:scp和rsync
(1)scp可以实现服务器与服务器之间的数据拷贝。(from server1 to server2)
基本语法如下:
scp -r $pdir/$fname $user@$host:$pdir/$fname
命令 递归 要拷贝的文件路径/名称 目的地用户@主机:目的地路径/名称
scp -r /opt/module/jdk1.8.0_212 atguigu@hadoop103:/opt/module
在hadoop102上,将hadoop102中/opt/module/jdk1.8.0_212目录拷贝到hadoop103上。
(2)rsync远程同步工具
rsync主要用于备份和镜像。具有速度快、避免复制相同内容和支持符号链接的优点。
rsync和scp区别:用rsync做文件的复制要比scp的速度快,rsync只对差异文件做更新。scp是把所有文件都复制过去。语法如下所示:
rsync -av $pdir/$fname $user@$host:$pdir/$fname
命令 选项参数 要拷贝的文件路径/名称 目的地用户@主机:目的地路径/名称
以下是具体命令:
rsync -av hadoop-3.1.3/ atguigu@hadoop103:/opt/module/hadoop-3.1.3/
对此可以写一个xsync集群分发脚本,需求是循环复制文件到所有节点的相同目录:
#!/bin/bash
#1. 判断参数个数
if [ $# -lt 1 ]
then
echo Not Enough Arguement!
exit;
fi
#2. 遍历集群所有机器
for host in hadoop102 hadoop103 hadoop104
do
echo ==================== $host ====================
#3. 遍历所有目录,挨个发送
for file in $@
do
#4. 判断文件是否存在
if [ -e $file ]
then
#5. 获取父目录(用于拼接)
pdir=$(cd -P $(dirname $file); pwd)
#6. 获取当前文件的名称
fname=$(basename $file)
ssh $host "mkdir -p $pdir"
rsync -av $pdir/$fname $host:$pdir
else
echo $file does not exists!
fi
done
done
②配置ssh免密登录
(1)普通的ssh登录:ssh hadoop102
然后输密码
(2)ssh免密登录
cd .ssh 到.ssh目录下面
ssh-keygen -t rsa 生成密钥和公钥
把公钥发出去
ssh-copy-id hadoop102
ssh-copy-id hadoop103
ssh-copy-id hadoop104
ssh hadoop103 不需要密码就可以登进去了
免密登录的原理如下:
PS:即使在同一台机器,账户之间的ssh免密也是要配置的
③集群配置
(1)集群配置部署
(2)配置文件说明
(3)配置文件编写:都在etc/hadoop/目录下面
(1)core-site.xml:定义 Hadoop 核心全局配置,适用于所有组件(HDFS、YARN、MapReduce)。
配置 默认文件系统(HDFS 的访问地址) 和 临时目录。
<configuration>
<!-- 指定NameNode的地址 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop102:8020</value>
</property>
<!-- 指定hadoop数据的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/module/hadoop-3.1.3/data</value>
</property>
<!-- 配置HDFS网页登录使用的静态用户为atguigu -->
<property>
<name>hadoop.http.staticuser.user</name>
<value>atguigu</value>
</property>
</configuration>
(2)hdfs-site.xml:配置 HDFS(Hadoop 分布式文件系统)相关参数
<configuration>
<!-- nn web端访问地址-->
<property>
<name>dfs.namenode.http-address</name>
<value>hadoop102:9870</value>
</property>
<!-- 2nn web端访问地址-->
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>hadoop104:9868</value>
</property>
</configuration>
(3)mapred-site.xml:配置 MapReduce 计算框架的参数。
<configuration>
<!-- 指定MapReduce程序运行在Yarn上 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<!-- 历史服务器端地址 -->
<property>
<name>mapreduce.jobhistory.address</name>
<value>hadoop102:10020</value>
</property>
<!-- 历史服务器web端地址 -->
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hadoop102:19888</value>
</property>
</configuration>
(4)yarn-site.xml:配置 YARN 资源管理框架的参数。
<configuration>
<!-- Site specific YARN configuration properties -->
<!-- 指定MR走shuffle -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!-- 指定ResourceManager的地址-->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop103</value>
</property>
<!-- 环境变量的继承 -->
<property>
<name>yarn.nodemanager.env-whitelist</name>
<value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
</property>
<!-- 开启日志聚集功能 -->
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<!-- 设置日志聚集服务器地址 -->
<property>
<name>yarn.log.server.url</name>
<value>http://hadoop102:19888/jobhistory/logs</value>
</property>
<!-- 设置日志保留时间为7天 -->