- 博客(81)
- 收藏
- 关注
原创 Docker 入门教程(十):镜像构建、提交、打标签与上传
本文介绍了Docker镜像的构建、提交、打标签与上传方法。主要内容包括:1)镜像的两种构建方式对比(docker commit和docker build);2)使用docker commit将容器保存为镜像的步骤;3)推荐使用Dockerfile构建镜像的方法;4)镜像上传流程,包括登录、打标签和推送;5)镜像拉取操作。文章还详细说明了镜像命名格式规范,并提供了完整的实践流程。通过本教程,用户可以掌握Docker镜像全生命周期管理的核心操作。
2025-06-30 10:56:10
339
原创 Docker 入门教程(九):容器网络与通信机制
摘要:Docker网络与通信机制详解 Docker提供四种网络模式:默认bridge(NAT隔离)、host(共享主机网络)、none(完全隔离)和自定义bridge(推荐)。关键区别在于: 默认bridge网络需用IP通信,自定义网络支持DNS容器名解析 host模式性能高但安全性低 none模式适合极端隔离场景 核心操作: 创建自定义网络:docker network create mynet 查看网络详情:docker network inspect 容器连接网络:docker network con
2025-06-30 10:55:16
991
原创 Docker 入门教程(八):Dockerfile
Dockerfile入门指南:核心指令解析 Dockerfile是构建Docker镜像的脚本文件,包含FROM、RUN、COPY等关键指令。本文详解主要指令:FROM指定基础镜像;RUN执行命令安装依赖;COPY/ADD复制文件;WORKDIR设置工作目录;CMD/ENTRYPOINT定义启动命令(后者优先级更高);ENV设置环境变量;EXPOSE声明端口。特别区分了RUN(构建时执行)、CMD(默认启动命令,可覆盖)和ENTRYPOINT(主程序入口)的差异。多阶段构建和ARG参数等进阶用法也有涉及,为容
2025-06-29 10:28:43
1258
原创 Docker 入门教程(七):容器数据卷
Docker容器数据卷教程摘要:本文介绍Docker数据卷的三种挂载方式及其应用场景。匿名卷(-v /data)自动创建但不易复用;具名卷(-v name:/data)持久化管理;绑定挂载(-v /host:/container)适合开发调试。重点讲解MySQL数据持久化方法,通过具名卷保存数据库文件,避免容器删除导致数据丢失。同时提及旧式数据卷容器技术(--volumes-from),但推荐使用具名卷和Compose替代。数据卷机制有效解决了容器数据不持久、不可共享的核心问题。
2025-06-29 10:27:03
434
原创 Docker 入门教程(六):联合文件系统(UnionFS)
Docker 通过联合文件系统(UnionFS)实现镜像分层和容器隔离。镜像由多个只读层叠加组成,每层记录文件系统的差异;容器运行时在最上方添加可写层,所有修改操作都通过写时复制(Copy-on-Write)机制实现。这种设计带来高效复用、缓存加速和版本一致性等优势。文章详细介绍了镜像层级结构、写层工作原理、存储驱动类型以及从镜像到容器的完整生命周期,揭示了Docker轻量化、高效化的底层机制。理解UnionFS是掌握Docker镜像管理、容器运行和持续集成的关键基础。
2025-06-28 10:20:10
624
原创 Docker 入门教程(五):Docker 命令思维导图
《Docker命令思维导图教程》通过可视化方式梳理了Docker的核心操作流程。主要内容包括:镜像生命周期管理(build/pull/push/tag/rmi)、容器操作(run/exec/logs/stop/rm)、主机与容器文件交互(cp)、镜像构建与打包(build/save/export),以及仓库管理(login/pull/push)等。文章采用Mermaid流程图和结构图清晰展现了Dockerfile→镜像→容器的完整链路,并分类列出40余个常用命令及其功能,如docker inspect查看元
2025-06-28 10:18:47
824
原创 Docker 入门教程(四):容器命令
本文介绍了Docker容器管理的核心命令。主要内容包括:使用docker run创建并运行容器(支持交互模式、后台运行、端口映射等参数);查看容器列表的docker ps命令;容器生命周期管理(停止、启动、重启和删除);进入容器的exec和attach方法;查看容器日志和详情的命令;监控容器资源使用的方法;以及常用容器命令速查表。这些命令涵盖了从容器创建到销毁的全流程操作,是使用Docker的基础知识。
2025-06-27 10:41:35
328
原创 Docker 入门教程(三):镜像操作命令
本文介绍了Docker镜像操作的常用命令与技巧。主要内容包括:通过docker pull获取镜像并指定版本;使用docker images查看镜像列表并过滤结果;通过docker rmi删除镜像;docker search搜索公共镜像;docker tag为镜像打标签;以及查看镜像详情、历史、导出导入镜像等操作。文章还提供了清理无用镜像的方法和常用命令速查表,帮助开发者高效管理Docker镜像,适用于日常开发与维护工作。
2025-06-27 10:39:59
842
原创 Docker 入门教程(二):Docker 的基本原理
Docker基本原理与架构解析 Docker采用C/S架构,由三大核心组件构成:客户端命令行工具、dockerd守护进程和镜像仓库。客户端通过HTTP API与dockerd交互,后者负责实际执行镜像管理、容器创建等操作,并维护镜像和容器两大核心资源。镜像仓库(如Docker Hub)是镜像集中分发平台。镜像与容器的关系可类比为"类与实例"或"安装包与运行程序"——镜像作为静态模板,容器是其动态实例化结果。执行docker run时,Docker会依次完成镜像检查/下
2025-06-26 22:37:44
865
原创 Docker 入门教程(一):从概念到第一个容器
Docker入门教程:从概念到第一个容器 本文介绍了Docker的基础知识,包括其作为开源容器化平台的特性,以及与虚拟机的对比。文章详细讲解了Docker的核心概念:镜像(Image)、容器(Container)、Dockerfile和仓库(Registry)。同时提供了Windows/macOS和Linux(Ubuntu)系统的Docker安装指南,并展示了如何通过"docker run hello-world"命令运行第一个测试容器。最后列举了常用的Docker命令,如查看容器/镜像
2025-06-26 22:34:27
1557
原创 【AI模型学习】上/下采样
基于Transformer架构的图像分割模型(如SegFormer、Swin-Unet)中,上采样和下采样结构是标准配置。下采样主要用于提取高层语义特征和减少计算成本,通过降低分辨率和聚焦于更宽范围的上下文信息。
2025-05-22 17:10:44
1001
1
原创 【差异分析】FDR
FDR 校正是一种用于多重假设检验的统计方法,旨在控制假发现率(False Discovery Rate),即在所有阳性结果中假阳性的比例。
2025-05-22 12:41:16
1290
原创 【AI模型学习】Gumbel-Softmax —— “软硬皆吃”的函数
Gumbel-Softmax 是一种可微分的替代方案,用于在神经网络中对离散类别变量进行建模与采样。其核心优势在于能够在反向传播中保留梯度信息的同时,实现对离散变量的“近似采样”。
2025-05-22 12:39:39
2196
原创 【差异分析】t-test
独立样本 t 检验(two-sample t-test)是一种用于比较两组样本均值差异的统计方法,广泛应用于基因表达差异分析中。其核心目标是通过构造 t 统计量,检验实验组和对照组的平均表达值是否存在显著差异。
2025-05-21 16:43:48
878
原创 【AI模型学习】ESM2
ESM-2是一个基于Transformer架构的蛋白质语言模型,提供多个版本选择,包括从8M到15B参数的不同规模模型,适用于不同计算需求的任务。
2025-05-21 16:38:57
3004
原创 【聚类】K-means++
K-means++ 是 David Arthur 和 Sergei Vassilvitskii 于2007年提出的改进 k-means 初始化方法,旨在通过更合理地选择初始簇心,减少 k-means 对随机初始化的敏感性,加快收敛并降低陷入次优解的风险
2025-05-19 08:52:29
1810
原创 【聚类】 K-means
K-means 是一种经典的原型聚类算法,旨在将数据点划分为 K 个簇,最大化簇内相似度并最小化簇间差异。其核心步骤包括初始化簇心、迭代优化(分配样本到最近簇心、更新簇心)和收敛判定。
2025-05-18 10:45:03
720
1
原创 【降维】LLE
局部线性嵌入(LLE)是一种基于流形学习的非线性降维方法,由 Roweis 和 Saul 于2000年提出。其主要目标是在低维空间中保留高维数据在局部邻域内的线性重构关系,从而揭示数据的内在低维流形结构。
2025-05-18 10:43:54
853
原创 【降维】t-SNE
t-SNE(t-distributed Stochastic Neighbor Embedding)是一种非线性降维技术,由Laurens van der Maaten和Geoffrey Hinton于2008年提出,主要用于高维数据的可视化和聚类分析。
2025-05-17 09:32:27
1205
原创 【降维】PCA
主成分分析(PCA)是一种无监督的线性降维方法,最早由Karl Pearson在1901年提出。其核心目标是在保留数据总方差的前提下,将高维数据投影到低维空间。PCA的应用场景包括降维与可视化、去噪、特征压缩和数据预处理。
2025-05-17 09:31:29
1014
原创 【匹配】Gotoh
Gotoh 算法是 Needleman-Wunsch 全局比对算法的改进版本,由 O. Gotoh 于1982年提出,主要用于支持仿射缺口惩罚的序列比对。
2025-05-16 17:44:24
1148
原创 【匹配】Smith-Waterman
Smith-Waterman算法是一种用于生物序列局部比对的经典动态规划方法,由Temple F. Smith和Michael S. Waterman于1981年提出。该算法旨在找到两条序列中得分最高的局部片段比对,允许插入、缺失和错配。
2025-05-15 22:41:46
869
原创 【匹配】Needleman–Wunsch
Needleman-Wunsch算法是一种用于生物序列全局比对的经典动态规划方法,由Saul B. Needleman和Christian D. Wunsch于1970年提出。该算法通过构建积分得分矩阵,利用动态规划递推计算最优比对得分,并通过回溯还原最佳全局比对路径。
2025-05-15 22:40:35
857
原创 【AI模型学习】GPT——从v1到v3
与GPT-2使用的WebText数据集不同,GPT-3的训练数据集规模更大,包含了各种公开的互联网文本资源,如书籍、文章、网站等。Zero-shot学习的能力使得GPT-2在处理不同任务时不需要大量的标注数据,它依靠之前的无监督预训练,已经学到了丰富的语言模式。例如,给定一段简单的描述:“根据下面的文本判断它是积极的还是消极的”,GPT-3可以直接根据文本生成情感分析的结果,完全不需要微调。上的能力也得到了极大的提升。这两个组件使用 mask 的方式有非常重要的差异,直接影响了模型的能力和任务的适用性。
2025-04-27 11:38:31
959
原创 【AI模型学习】双流网络——更强大的网络设计
Two-Stream Convolutional Networks for Action Recognition in Videos作者:Karen Simonyan & Andrew Zisserman(牛津 VGG)
2025-04-24 12:28:35
1170
原创 【Python标准库】数学相关的9个标准库
本文档系统化地扩展了 Python 中数字与数学计算标准库的使用方法,适用于数据分析、科学计算、函数式编程、教学等领域的开发实践。
2025-04-19 12:49:08
1666
2
原创 【内置函数】84个Python内置函数全整理
内置函数是 Python 最精华的“基础工具库”,不容忽视!掌握它们,不仅能减少代码量、提升效率,还能避免命名错误和轮子重造。
2025-04-19 12:15:11
2890
15
原创 【AI模型学习】MAE——CV界的无监督预训练
Autoencoders(MAE),其核心思想是通过对图像进行高比例遮挡,仅保留部分可见 patch,并训练模型从中重建原始图像。整体架构采用不对称设计:编码器(encoder)仅处理未被遮挡的 patch,聚焦学习图像的全局语义特征;解码器(decoder)接收全部 patch 位置(包括 mask token),以较小规模重建图像像素。
2025-04-15 12:39:39
1717
11
原创 【模型学习之路】NTN块,SimGNN
学习一下SimGNN,同时也重点学习一下NTN模块以及Pairwise Node Comparison等常用的操作。
2024-11-27 22:50:40
963
用python实现k-means算法,同时进行可视化
2024-06-02
用python代码实现的熵权法
2024-06-02
Python文件实现一个使用Ridge回归和普通线性回归来拟合带有噪声的数据集
2024-06-01
spss尝试连接到远程服务器失败
2024-03-30
有没有懂行的人能写出正确的代码,如何解决?(关键词-rdkit中文教程)
2024-03-01
线性规划问题结果有问题
2024-01-22
大一第一次参加美赛,成员信息不会操作
2024-01-13
如何用函数进行牛顿插值
2024-01-11
sympy画图的问题
2024-01-07
如何用Python画三维隐函数?
2023-12-10
TA创建的收藏夹 TA关注的收藏夹
TA关注的人