自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(81)
  • 收藏
  • 关注

原创 Docker 入门教程(十):镜像构建、提交、打标签与上传

本文介绍了Docker镜像的构建、提交、打标签与上传方法。主要内容包括:1)镜像的两种构建方式对比(docker commit和docker build);2)使用docker commit将容器保存为镜像的步骤;3)推荐使用Dockerfile构建镜像的方法;4)镜像上传流程,包括登录、打标签和推送;5)镜像拉取操作。文章还详细说明了镜像命名格式规范,并提供了完整的实践流程。通过本教程,用户可以掌握Docker镜像全生命周期管理的核心操作。

2025-06-30 10:56:10 339

原创 Docker 入门教程(九):容器网络与通信机制

摘要:Docker网络与通信机制详解 Docker提供四种网络模式:默认bridge(NAT隔离)、host(共享主机网络)、none(完全隔离)和自定义bridge(推荐)。关键区别在于: 默认bridge网络需用IP通信,自定义网络支持DNS容器名解析 host模式性能高但安全性低 none模式适合极端隔离场景 核心操作: 创建自定义网络:docker network create mynet 查看网络详情:docker network inspect 容器连接网络:docker network con

2025-06-30 10:55:16 991

原创 Docker 入门教程(八):Dockerfile

Dockerfile入门指南:核心指令解析 Dockerfile是构建Docker镜像的脚本文件,包含FROM、RUN、COPY等关键指令。本文详解主要指令:FROM指定基础镜像;RUN执行命令安装依赖;COPY/ADD复制文件;WORKDIR设置工作目录;CMD/ENTRYPOINT定义启动命令(后者优先级更高);ENV设置环境变量;EXPOSE声明端口。特别区分了RUN(构建时执行)、CMD(默认启动命令,可覆盖)和ENTRYPOINT(主程序入口)的差异。多阶段构建和ARG参数等进阶用法也有涉及,为容

2025-06-29 10:28:43 1258

原创 Docker 入门教程(七):容器数据卷

Docker容器数据卷教程摘要:本文介绍Docker数据卷的三种挂载方式及其应用场景。匿名卷(-v /data)自动创建但不易复用;具名卷(-v name:/data)持久化管理;绑定挂载(-v /host:/container)适合开发调试。重点讲解MySQL数据持久化方法,通过具名卷保存数据库文件,避免容器删除导致数据丢失。同时提及旧式数据卷容器技术(--volumes-from),但推荐使用具名卷和Compose替代。数据卷机制有效解决了容器数据不持久、不可共享的核心问题。

2025-06-29 10:27:03 434

原创 Docker 入门教程(六):联合文件系统(UnionFS)

Docker 通过联合文件系统(UnionFS)实现镜像分层和容器隔离。镜像由多个只读层叠加组成,每层记录文件系统的差异;容器运行时在最上方添加可写层,所有修改操作都通过写时复制(Copy-on-Write)机制实现。这种设计带来高效复用、缓存加速和版本一致性等优势。文章详细介绍了镜像层级结构、写层工作原理、存储驱动类型以及从镜像到容器的完整生命周期,揭示了Docker轻量化、高效化的底层机制。理解UnionFS是掌握Docker镜像管理、容器运行和持续集成的关键基础。

2025-06-28 10:20:10 624

原创 Docker 入门教程(五):Docker 命令思维导图

《Docker命令思维导图教程》通过可视化方式梳理了Docker的核心操作流程。主要内容包括:镜像生命周期管理(build/pull/push/tag/rmi)、容器操作(run/exec/logs/stop/rm)、主机与容器文件交互(cp)、镜像构建与打包(build/save/export),以及仓库管理(login/pull/push)等。文章采用Mermaid流程图和结构图清晰展现了Dockerfile→镜像→容器的完整链路,并分类列出40余个常用命令及其功能,如docker inspect查看元

2025-06-28 10:18:47 824

原创 Docker 入门教程(四):容器命令

本文介绍了Docker容器管理的核心命令。主要内容包括:使用docker run创建并运行容器(支持交互模式、后台运行、端口映射等参数);查看容器列表的docker ps命令;容器生命周期管理(停止、启动、重启和删除);进入容器的exec和attach方法;查看容器日志和详情的命令;监控容器资源使用的方法;以及常用容器命令速查表。这些命令涵盖了从容器创建到销毁的全流程操作,是使用Docker的基础知识。

2025-06-27 10:41:35 328

原创 Docker 入门教程(三):镜像操作命令

本文介绍了Docker镜像操作的常用命令与技巧。主要内容包括:通过docker pull获取镜像并指定版本;使用docker images查看镜像列表并过滤结果;通过docker rmi删除镜像;docker search搜索公共镜像;docker tag为镜像打标签;以及查看镜像详情、历史、导出导入镜像等操作。文章还提供了清理无用镜像的方法和常用命令速查表,帮助开发者高效管理Docker镜像,适用于日常开发与维护工作。

2025-06-27 10:39:59 842

原创 Docker 入门教程(二):Docker 的基本原理

Docker基本原理与架构解析 Docker采用C/S架构,由三大核心组件构成:客户端命令行工具、dockerd守护进程和镜像仓库。客户端通过HTTP API与dockerd交互,后者负责实际执行镜像管理、容器创建等操作,并维护镜像和容器两大核心资源。镜像仓库(如Docker Hub)是镜像集中分发平台。镜像与容器的关系可类比为"类与实例"或"安装包与运行程序"——镜像作为静态模板,容器是其动态实例化结果。执行docker run时,Docker会依次完成镜像检查/下

2025-06-26 22:37:44 865

原创 Docker 入门教程(一):从概念到第一个容器

Docker入门教程:从概念到第一个容器 本文介绍了Docker的基础知识,包括其作为开源容器化平台的特性,以及与虚拟机的对比。文章详细讲解了Docker的核心概念:镜像(Image)、容器(Container)、Dockerfile和仓库(Registry)。同时提供了Windows/macOS和Linux(Ubuntu)系统的Docker安装指南,并展示了如何通过"docker run hello-world"命令运行第一个测试容器。最后列举了常用的Docker命令,如查看容器/镜像

2025-06-26 22:34:27 1557

原创 【AI模型学习】上/下采样

基于Transformer架构的图像分割模型(如SegFormer、Swin-Unet)中,上采样和下采样结构是标准配置。下采样主要用于提取高层语义特征和减少计算成本,通过降低分辨率和聚焦于更宽范围的上下文信息。

2025-05-22 17:10:44 1001 1

原创 【差异分析】FDR

FDR 校正是一种用于多重假设检验的统计方法,旨在控制假发现率(False Discovery Rate),即在所有阳性结果中假阳性的比例。

2025-05-22 12:41:16 1290

原创 【AI模型学习】Gumbel-Softmax —— “软硬皆吃”的函数

Gumbel-Softmax 是一种可微分的替代方案,用于在神经网络中对离散类别变量进行建模与采样。其核心优势在于能够在反向传播中保留梯度信息的同时,实现对离散变量的“近似采样”。

2025-05-22 12:39:39 2196

原创 【差异分析】t-test

独立样本 t 检验(two-sample t-test)是一种用于比较两组样本均值差异的统计方法,广泛应用于基因表达差异分析中。其核心目标是通过构造 t 统计量,检验实验组和对照组的平均表达值是否存在显著差异。

2025-05-21 16:43:48 878

原创 【AI模型学习】ESM2

ESM-2是一个基于Transformer架构的蛋白质语言模型,提供多个版本选择,包括从8M到15B参数的不同规模模型,适用于不同计算需求的任务。

2025-05-21 16:38:57 3004

原创 【聚类】层次聚类

层次聚类

2025-05-19 08:53:31 1113

原创 【聚类】K-means++

K-means++ 是 David Arthur 和 Sergei Vassilvitskii 于2007年提出的改进 k-means 初始化方法,旨在通过更合理地选择初始簇心,减少 k-means 对随机初始化的敏感性,加快收敛并降低陷入次优解的风险

2025-05-19 08:52:29 1810

原创 【聚类】 K-means

K-means 是一种经典的原型聚类算法,旨在将数据点划分为 K 个簇,最大化簇内相似度并最小化簇间差异。其核心步骤包括初始化簇心、迭代优化(分配样本到最近簇心、更新簇心)和收敛判定。

2025-05-18 10:45:03 720 1

原创 【降维】LLE

局部线性嵌入(LLE)是一种基于流形学习的非线性降维方法,由 Roweis 和 Saul 于2000年提出。其主要目标是在低维空间中保留高维数据在局部邻域内的线性重构关系,从而揭示数据的内在低维流形结构。

2025-05-18 10:43:54 853

原创 【降维】t-SNE

t-SNE(t-distributed Stochastic Neighbor Embedding)是一种非线性降维技术,由Laurens van der Maaten和Geoffrey Hinton于2008年提出,主要用于高维数据的可视化和聚类分析。

2025-05-17 09:32:27 1205

原创 【降维】PCA

主成分分析(PCA)是一种无监督的线性降维方法,最早由Karl Pearson在1901年提出。其核心目标是在保留数据总方差的前提下,将高维数据投影到低维空间。PCA的应用场景包括降维与可视化、去噪、特征压缩和数据预处理。

2025-05-17 09:31:29 1014

原创 【匹配】Hirschberg

Hirschberg 算法是 Dan Hirschberg 于1975年提出的一种用于序列全局比对的优化算法。

2025-05-16 17:45:34 693

原创 【匹配】Gotoh

Gotoh 算法是 Needleman-Wunsch 全局比对算法的改进版本,由 O. Gotoh 于1982年提出,主要用于支持仿射缺口惩罚的序列比对。

2025-05-16 17:44:24 1148

原创 【匹配】Smith-Waterman

Smith-Waterman算法是一种用于生物序列局部比对的经典动态规划方法,由Temple F. Smith和Michael S. Waterman于1981年提出。该算法旨在找到两条序列中得分最高的局部片段比对,允许插入、缺失和错配。

2025-05-15 22:41:46 869

原创 【匹配】Needleman–Wunsch

Needleman-Wunsch算法是一种用于生物序列全局比对的经典动态规划方法,由Saul B. Needleman和Christian D. Wunsch于1970年提出。该算法通过构建积分得分矩阵,利用动态规划递推计算最优比对得分,并通过回溯还原最佳全局比对路径。

2025-05-15 22:40:35 857

原创 【AI模型学习】GPT——从v1到v3

与GPT-2使用的WebText数据集不同,GPT-3的训练数据集规模更大,包含了各种公开的互联网文本资源,如书籍、文章、网站等。Zero-shot学习的能力使得GPT-2在处理不同任务时不需要大量的标注数据,它依靠之前的无监督预训练,已经学到了丰富的语言模式。例如,给定一段简单的描述:“根据下面的文本判断它是积极的还是消极的”,GPT-3可以直接根据文本生成情感分析的结果,完全不需要微调。上的能力也得到了极大的提升。这两个组件使用 mask 的方式有非常重要的差异,直接影响了模型的能力和任务的适用性。

2025-04-27 11:38:31 959

原创 【AI模型学习】双流网络——更强大的网络设计

Two-Stream Convolutional Networks for Action Recognition in Videos作者:Karen Simonyan & Andrew Zisserman(牛津 VGG)

2025-04-24 12:28:35 1170

原创 【AI模型学习】CLIP——迁移模型的新高度

详解CLIP模型,包学会

2025-04-23 12:57:19 889

原创 【AI模型学习】Swin Transformer——优雅的模型

最优雅的模型之一

2025-04-22 20:16:52 728

原创 【Python标准库】数学相关的9个标准库

本文档系统化地扩展了 Python 中数字与数学计算标准库的使用方法,适用于数据分析、科学计算、函数式编程、教学等领域的开发实践。

2025-04-19 12:49:08 1666 2

原创 【内置函数】84个Python内置函数全整理

内置函数是 Python 最精华的“基础工具库”,不容忽视!掌握它们,不仅能减少代码量、提升效率,还能避免命名错误和轮子重造。

2025-04-19 12:15:11 2890 15

原创 【AI模型学习】关于写论文——论文的审美

补丁法在现有研究系统或方法中,找到其薄弱点、局限性或不合理的地方,并提出一个“补丁式”的改进。

2025-04-18 23:18:14 986 4

原创 【AI模型学习】Moco(下)——巧妙的队列设计

详解Moco的流程

2025-04-16 18:54:56 806 2

原创 【AI模型学习】Moco(上)——自监督学习和对比学习

Moco!!

2025-04-16 18:45:05 925

原创 【AI模型学习】MAE——CV界的无监督预训练

Autoencoders(MAE),其核心思想是通过对图像进行高比例遮挡,仅保留部分可见 patch,并训练模型从中重建原始图像。整体架构采用不对称设计:编码器(encoder)仅处理未被遮挡的 patch,聚焦学习图像的全局语义特征;解码器(decoder)接收全部 patch 位置(包括 mask token),以较小规模重建图像像素。

2025-04-15 12:39:39 1717 11

原创 【AI模型学习】ViT——开启CV界的Tranformer时代

关于ViT

2025-04-14 21:30:18 1088

原创 【GNNs】GAT原理即应用

从GCN到GAT

2025-01-11 15:28:58 623

原创 【GNNs】GCN原理以及多种实现

用pytorch和pyg实现GCN

2025-01-10 22:32:07 1123

原创 【模型学习之路】NTN块,SimGNN

学习一下SimGNN,同时也重点学习一下NTN模块以及Pairwise Node Comparison等常用的操作。

2024-11-27 22:50:40 963

原创 【模型学习之路】TopK池化,全局池化

来学学图卷积中的池化操作。

2024-11-26 21:34:24 1597

tranformer.py

这个实现是基础的 Transformer 层,可以根据需要扩展,例如加入位置编码、掩码机制等。

2025-04-16

用python实现k-means算法,同时进行可视化

K-means算法介绍 K-means是一种流行的聚类算法,用于将数据点划分为K个簇(或组)。它是一种迭代算法,旨在最小化簇内的方差,即试图找到使簇内点尽可能相似的簇中心。算法的基本步骤如下: 初始化:随机选择K个数据点作为初始簇中心。 分配:将每个点分配给最近的簇中心,形成K个簇。 更新:重新计算每个簇的中心,通常为簇内所有点的均值。 迭代:重复步骤2和3,直到簇中心不再显著变化或达到预设的迭代次数。 K-means算法简单、易于实现,并且对于大规模数据集相对高效。然而,它也有一些局限性,比如: 需要预先指定K值,而这个值通常不是显而易见的。 对初始簇中心的选择敏感,可能导致局部最优解。 可能无法很好地处理非球形或大小不一的簇。

2024-06-02

用python代码实现的熵权法

这段代码首先定义了一个entropy_weight_method函数,它接受一个特征矩阵作为输入,然后通过以下步骤计算权重和综合得分: 对特征矩阵进行归一化处理,使得每一列的和为1。 计算每个特征的熵,然后通过归一化处理得到熵值。 根据熵值计算每个特征的权重,权重越大表示该特征的重要性越高。 计算每个样本的综合得分,即特征矩阵与权重向量的点积。 根据综合得分对样本进行排序,得到排名。

2024-06-02

Python文件实现一个使用Ridge回归和普通线性回归来拟合带有噪声的数据集

演示如何使用Ridge回归和普通线性回归来拟合具有高次多项式特征的数据,并比较两者在处理数据噪声时的效果。文件中生成了一组基础数据,向其添加了随机噪声,然后通过多项式特征转换来提高数据的复杂性。接着,文件分别使用普通线性回归和Ridge回归模型来拟合这些数据,并绘制了两种回归模型的预测结果与原始数据的对比图。

2024-06-01

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除