归一化 正则化 标准化

本文介绍了数据预处理中的归一化和正则化技术。标准化包括standardScaler、minmaxScaler和MaxAbsScaler,用于消除特征间的尺度差异,加速模型训练过程。正则化主要通过调整向量的一阶或无穷阶范数,防止过拟合,常见的正则项有0范式、1范式和2范式。正则化通过添加惩罚因子降低参数大小,避免模型过度复杂,提高泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标准化是对列进行归一化操作,主要包括:

standardScaler: 将特征标准化为单位标准差或是0均值,或是0均值单位标准差。

minmaxScaler:将特征的值缩放到[0,1]范围。x=(x-min)/(max-min)

MaxAbsScaler:将特征的值缩放到[-1,1]范围。x=x / max|x|

 

为什么要进行标准化操作?

在现实生活中,一个目标变量(y)可以认为是由多个特征变量(x)影响和控制的,那么这些特征变量的量纲和数值的量级就会不一样,比如x1 = 10000,x2 = 1,x3 = 0.5 可以很明显的看出特征x1和x2、x3存在量纲的差距;x1对目标变量的影响程度将会比x2、x3对目标变量的影响程度要大(可以这样认为目标变量由x1掌控,x2,x3影响较小,一旦x1的值出现问题,将直接的影响到目标变量的预测,把目标变量的预测值由x1独揽大权,会存在高风险的预测)而通过标准化处理,可以使得不同的特征变量具有相同的尺度(也就是说将特征的值控制在某个范围内),这样目标变量就可以由多个相同尺寸的特征变量进行控制,这样,在使用梯度下降法学习参数的时候,不同特征对参数的影响程度就一样了。比如在训练神经网络的过程中,通过将数据标准化,能够加速权重参数的收敛。
简而言之:对数据标准化的目的是消除特征之间的差异性,便于特征一心一意学习权重。

 

什么时候需要进行数据标准化,什么时候不需要进行数据标准化?

当原始数据不同维度上的特征的尺度(单位)不一致时,需要标准化步骤对数据进行预处理,反之

<think>好的,用户想了解归一化正则化的概念及区别。首先,我需要确认这两个术语的定义以及它们在机器学习中的具体应用。根据提供的引用内容,归一化属于数据预处理,而正则化用于防止过拟合。 首先,我需要整理引用中的信息。引用[1]指出归一化正则化的目的、方法和作用不同。引用[2]详细说明正则化是添加额外信息解决过拟合,通常作用在目标函数。引用[3]提到标准化归一化处理数据,正则化处理模型参数,且涉及距离计算的模型可能需要归一化标准化。 接下来,我需要分点解释两者的定义和差异。用户可能需要明确的对比,比如作用对象、目的、方法等。需要确保回答结构清晰,按照定义、作用对象、目的、技术方法、应用场景等方面展开。 同时,用户可能对为什么需要这些技术有疑问,所以需要举例说明,比如归一化如何加速训练,正则化如何防止过拟合。另外,可能需要提到常见的方法,如L1/L2正则化,Min-Max归一化等。 还要注意用户可能混淆标准化归一化,但根据问题,重点在归一化正则化的区别。所以需要明确区分这两个概念,同时简要提到标准化,但不过多展开。 最后,生成相关问题时要围绕这两个概念,可能涉及它们的应用场景、具体方法、选择依据等。确保问题具有针对性,帮助用户进一步理解。 需要检查是否所有数学表达式都正确使用$...$或$$...$$格式,例如提到L2正则化时的公式要正确排版。同时,确保回答使用中文,引用标识正确添加在引用段落末尾。</think>### 归一化正则化的定义及差异 #### 1. **归一化(Normalization)** - **定义**:归一化是一种数据预处理技术,通过调整数据分布使其映射到特定范围(如$[0,1]$或$[-1,1]$),以消除量纲差异。例如,Min-Max归一化公式为: $$x_{\text{norm}} = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$ - **作用对象**:直接作用于输入数据或特征。 - **目的**: - 加速模型收敛:梯度下降算法在归一化后的数据上更稳定[^1]; - 提高模型精度:避免某些特征因量纲大而主导模型训练; - 适用于依赖距离计算的模型(如KNN、SVM、神经网络)[^3]。 - **常见方法**:Min-Max归一化、Z-Score标准化(虽然标准化严格来说不是归一化,但常被归为此类)。 #### 2. **正则化(Regularization)** - **定义**:正则化通过向目标函数添加惩罚项,限制模型复杂度,防止过拟合。例如,L2正则化的损失函数为: $$L_{\text{reg}} = L + \lambda \sum_{i=1}^n w_i^2$$ 其中$\lambda$是正则化系数,$w_i$为模型参数[^2]。 - **作用对象**:作用于模型参数(如权重)。 - **目的**: - 抑制过拟合:通过惩罚大权重值,降低模型对训练数据的敏感度; - 增强泛化能力:使模型在测试集上表现更稳定。 - **常见方法**:L1正则化(稀疏化权重)、L2正则化(权重衰减)、Dropout(神经网络中随机失活神经元)。 #### 3. **核心差异** | **维度** | **归一化** | **正则化** | |----------------|-------------------------------|-------------------------------| | **作用阶段** | 数据预处理阶段 | 模型训练阶段 | | **作用对象** | 输入数据 | 模型参数 | | **主要目标** | 消除特征量纲差异,加速训练 | 防止过拟合,提高泛化能力 | | **技术方法** | Min-Max、Z-Score等 | L1/L2正则化、Dropout等 | #### 4. **应用场景示例** - **归一化**:图像处理中将像素值从$[0,255]$缩放到$[0,1]$;文本分类中统一TF-IDF特征范围。 - **正则化**:线性回归中使用岭回归(L2正则化);神经网络中结合Dropout层。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值