DeepSeek 是字节跳动研发的一系列模型,包括 DeepSeek Coder(代码模型)和 DeepSeek LLM(大语言模型)。以下为你详细介绍本地部署 DeepSeek 的条件和步骤。
部署条件
硬件条件
- GPU:由于 DeepSeek 模型规模较大,推理需要较强的计算能力,建议使用 NVIDIA GPU,且显存越大越好。例如,部署 7B 模型,至少需要 16GB 显存;部署 67B 模型,建议使用 80GB 显存的 A100 等高端 GPU。
- CPU:多核 CPU 有助于提高数据处理和模型加载的速度,建议使用 Intel Xeon 系列或 AMD EPYC 系列等服务器级 CPU。
- 内存:至少需要 32GB 以上的系统内存,以确保模型和数据能够顺利加载到内存中进行处理。
- 存储:需要足够的磁盘空间来存储模型文件,DeepSeek 7B 模型约占用 14GB 磁盘空间,67B 模型约占用 134GB 磁盘空间。
软件条件
- 操作系统:推荐使用 Linux 系统,如 Ubuntu 20.04 及以上版本,因为它对深度学习框架和 GPU 驱动的支持更好。
- Python 环境:Python 3.8 及以上版本,可通过 Anaconda 或 Miniconda 来管理 Python 环境。
- 深度学习框架:安装 PyTorch,版本需支持 CUDA(如果使用 GPU),以实现高效的模型推理。
- 其他依赖库:安装
transformers
、sentencepiece
等用于模型加载和处理的库。