二叉树常见问题

本文介绍了离散数学中的叶子结点概念,即度为0的结点,又称终端结点。阐述了二叉树中关于叶子结点与度为2的结点数量的关系,以及二叉树的结构特性,如总结点数的计算公式、各层结点的最大数量、深度与结点数的关系等。同时,讨论了满二叉树和完全二叉树的定义及其特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

叶子结点:是离散数学中的概念。一棵树当中没有子结点(即度为0)的结点称为叶子结点,简称“叶子”。 叶子是指度为0的结点,又称为终端结点。
n0:度为0的结点数
n1:度为1的结点数
n2:度为2的结点数
N:是总结点数
在二叉树中:
(1)n0=n2+1 (解释:度为0的结点(叶子结点)总比度为2的结点多一个)
(2)N=n0+n1+n2
(3)在第K层上,最多有2k-1结点
(4)深度为m的二叉树最多有2m-1个结点
(5)有n个结点的二叉树深度至少为[log2n]+1 注:[log2n]结果向下取整 如结果为3.33取整为3

满二叉树:除最后一层外,每一层上的结点数均达到最大值。
完全二叉树:除最后一层外,每一层上的结点数均达到最大值,在最后一层上只缺少右边的若干结点

在这里插入图片描述
在这里插入图片描述


以下为文章数据上标,下标写法
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值