ubuntu18.04安装opencv+CUDA10.2+cuDNN+YOLOv3

安装顺序:

  • Opencv
  • 显卡驱动
  • CUDA10.2
  • cuDnn
  • YOLOv3

1、Opencv3.2.0安装

搭建依赖环境

1

sudo apt-get install build-essential

安装依赖包

1

sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev

 安装可选包

1

sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

 下载Opencv3.2并安装

1

2

wget -O opencv.zip https://github.com/Itseez/opencv/archive/3.2.0.zip 

unzip opencv.zip

此时会生成一个opencv3.2.0文件夹

1

cd opencv-3.2.0

然后创建一个文件夹

1

2

3

4

5

mkdir build

cd build

cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..

make -j4

make install

执行cmake时,如果卡在了Downloading ippicv_linux_20151201.tgz,可以下载linux_20151201.tgz,

下载地址:https://pan.baidu.com/s/170j3x9zjMyWA6H9k7icpXQ 提取码: wcg3

然后放在opencv-3.2.0/3rdparty/ippicv/downloads/linux-808b791a6eac9ed78d32a7666804320e目录下。

重新执行以下命令cmake命令:

1

cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -DWITH_IPP=OFF ..

 cmake通过后,再执行

1

2

make -j4

make install

 设置路径

1

sudo vim /etc/ld.so.conf.d/opencv.conf

在文件中添加:

1

/usr/local/lib

保存后执行:

1

sudo ldconfig

 配置环境变量

1

sudo vim /etc/bash.bashrc

 文件末尾添加:

1

2

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig 

export PKG_CONFIG_PATH 

2、显卡驱动安装

禁用默认驱动

Ubuntu系统集成的显卡驱动程序是nouveau,它是第三方为NVIDIA开发的开源驱动,需要先将其屏蔽才能安装NVIDIA官方驱动。将驱动添加到黑名单blacklist.conf中,但是由于该文件的属性不允许修改,所以需要先修改文件属性。

查看属性

1

sudo ls -lh /etc/modprobe.d/blacklist.conf

 修改属性

1

sudo chmod 666 /etc/modprobe.d/blacklist.conf

用vim打开

1

sudo vim /etc/modprobe.d/blacklist.conf

 在该文件后添加以下几行:

1

2

3

4

5

blacklist vga16fb

blacklist nouveau

blacklist rivafb

blacklist rivatv

blacklist nvidiafb

安装显卡驱动

执行命令:

1

ubuntu-drivers devices

 

从这里可以看到,系统推荐我安装435或440版本驱动,我选择安装440版本。

1

#删除其它驱动<br>sudo apt-get remove --purge nvidia*

#增加源
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update

 然后安装显卡驱动:

1

sudo apt-get install nvidia-driver-440

 安装成功后重启电脑。

1

2

执行命令

nvidia-smi

 如果出现如果显卡列表界面,这显卡驱动安装成功。

CUDA10.2安装

注意:安装低版本的CUDA,需要对GCC进行降级

进入:https://developer.nvidia.com/cuda-toolkit-archive

 点击CUDA Toolkit10.2后,如图选择:

  CUDA官网会给出下载和安装方法,根据官网提示,执行:

1

2

3

4

5

6

7

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin

sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600

wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda-repo-ubuntu1804-10-2-local-10.2.89-440.33.01_1.0-1_amd64.deb

sudo dpkg -i cuda-repo-ubuntu1804-10-2-local-10.2.89-440.33.01_1.0-1_amd64.deb

sudo apt-key add /var/cuda-repo-10-2-local-10.2.89-440.33.01/7fa2af80.pub

sudo apt-get update

sudo apt-get -y install cuda

 设置环境变量

1

2

3

sudo vim ~/.bashrc

export PATH=/usr/local/cuda-10.2/bin${PATH:+:${PATH}}

export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

 使环境变量生效

1

source ~/.bashrc

 执行:

1

nvcc -V

 

 出现CUDA版本信息时,说明CUDA安装成功。

CUDNN安装

进入:https://developer.nvidia.com/rdp/cudnn-download

注册账号并登陆,选择“Download cuDNN v7.6.5 (November 18th, 2019), for CUDA 10.2”

然后下载“cuDNN Library for Linux”,下载完成后解压tgz文件,得到一个cuda文件夹:

1

tar -xzvf cudnn-10.2-linux-x64-v7.6.5.32.tgz

 然后复制文件:

1

2

3

sudo cp cuda/include/cudnn.h    /usr/local/cuda-10.2/include 

sudo cp cuda/lib64/libcudnn*    /usr/local/cuda-10.2/lib64

sudo chmod a+r /usr/local/cuda/include/cudnn.h   /usr/local/cuda/lib64/libcudnn*

 验证安装结果:

1

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

 

 出现如图界面,说明CUDNN安装成功。

cuDNN第二种安装方式:

2021-01-19更新:

服务器安装了CUDA 11.1版本,在安装cuDNN v8.0.5 for CUDA 11.1时发现,通过下载tgz,解压复制的方式无法正确的验证安装结果,所以采用了以下安装方式。

下载libcudnn8_8.0.5.39-1+cuda11.1_amd64.deb和libcudnn8-dev_8.0.5.39-1+cuda11.1_amd64.deb

 然后执行以下命令,完成安装:

1

sudo dpkg -i libcudnn8_8.0.5.39-1+cuda11.1_amd64.deb<br>sudo dpkg -i libcudnn8-dev_8.0.5.39-1+cuda11.1_amd64.deb

YOLOV3安装

1

git clone https://github.com/AlexeyAB/darknet<br>cd darknet

 vim编辑Makefile

1

vim Makefil

 

 将GPU、CUDNN、OPENCV的值改为1,然后执行:

1

make

 编译完成后,测试一下效果吧

参考网址:

  • https://blog.csdn.net/gzj_1101/article/details/78651650
  • https://blog.csdn.net/rgd888/article/details/91047780
  • https://blog.csdn.net/xiaokan_001/article/details/88126122
  • https://blog.csdn.net/debjiu/article/details/80824439
  • https://blog.csdn.net/phinoo/article/details/82999337
<think>好的,用户想在Ubuntu 18.04安装PyTorch 1.8版本。我需要根据提供的引用信息来整理步骤。首先,看看用户提供的引用内容,特别是引用3和4,因为它们提到了PyTorch 1.8的安装。 引用3提到在base环境下用pip安装PyTorch 1.8.0,并给出了具体的命令,包括torch、torchvision和torchaudio的版本。引用4是关于安装PyTorch 1.8 CPU版本和YOLOv5的,其中也提到了使用pip安装特定版本的库,可能用户有GPU或者CPU的需求。需要确认用户的环境是否有GPU支持。如果用户有CUDA环境,可能需要安装对应的CUDA版本,但PyTorch 1.8可能对CUDA版本有要求,比如引用2中提到的CUDA 10.2,但需要检查PyTorch 1.8官方是否支持CUDA 10.2或者其他版本。 用户的问题中没有明确说明是安装GPU版本还是CPU版本,所以可能需要分情况讨论。根据引用3安装GPU版本的话直接用pip命令即可,而引用4中的例子是安装CPU版本,可能不需要指定cudatoolkit。此外,引用4还提到了安装其他依赖库,比如torchvision、matplotlib等,这些可能是运行YOLOv5所需的,但用户的问题只是安装PyTorch 1.8,是否需要包括这些额外的依赖?可能需要建议用户根据项目需求安装。 另外,用户的环境是否需要使用conda还是pip?引用3用的是pip安装在base环境,而引用2用的是conda。需要指出两种安装方式的不同。例如,conda可以管理环境,而pip可能需要用户自己处理依赖。所以应该给出两种方法,并说明区别。 还要注意系统是Ubuntu 18.04,可能需要先安装Python环境,比如Python3.6+,以及pip或conda。如果用户没有这些,可能需要先安装。不过根据引用中的例子,用户可能已经具备这些,但可能需要确认。比如引用1提到了切换Python版本的命令,但用户当前问题可能不需要切换Python版本,除非有冲突。 总结步骤应该是:首先确认是否有GPU,然后选择安装方式(pip或conda),然后执行相应的命令。对于GPU版本,需要确保CUDA驱动正确安装,如引用2提到的CUDA 10.2,但PyTorch 1.8是否支持?需要查阅PyTorch官方文档确认兼容性。例如,PyTorch 1.8可能要求CUDA 11.1,这时候需要用户安装对应的CUDA版本,但引用2中的例子是CUDA 10.2,可能需要注意版本匹配问题。 可能存在的陷阱是用户安装了不兼容的CUDA版本,导致PyTorch无法使用GPU。因此,需要提醒用户检查CUDA版本,并选择正确的PyTorch安装命令。例如,PyTorch官网可能提供不同CUDA版本的安装命令,用户需要根据自己的CUDA版本来选择。 另外,是否需要创建虚拟环境?引用3安装在base环境,而引用4可能是在某个虚拟环境中安装。建议用户创建虚拟环境以避免依赖冲突,比如使用conda create或者venv。 最后,验证安装是否成功,可以通过运行Python代码检查torch版本和CUDA是否可用。</think>在Ubuntu 18.04系统中安装PyTorch 1.8的步骤如下,分两种场景说明: ### 1. GPU版本安装(需CUDA支持) 1. **确认CUDA版本兼容性** PyTorch 1.8官方推荐与CUDA 11.1配合使用。若已安装CUDA 10.2,需注意PyTorch 1.8的某些功能可能受限[^2][^3]。 2. **通过pip安装** 直接执行以下命令安装GPU版本: ```bash pip install torch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 ``` 若需指定CUDA 10.2兼容版本,可尝试: ```bash pip install torch==1.8.0+cu102 torchvision==0.9.0+cu102 -f https://download.pytorch.org/whl/torch_stable.html ``` 3. **验证GPU可用性** 运行Python代码检查: ```python import torch print(torch.__version__) # 应输出1.8.0 print(torch.cuda.is_available()) # 应返回True ``` --- ### 2. CPU版本安装 1. **通过pip安装** 执行以下命令: ```bash pip install torch==1.8.0+cpu torchvision==0.9.0+cpu torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html ``` 2. **验证安装** 运行Python代码: ```python import torch print(torch.__version__) # 输出1.8.0 ``` --- ### 环境管理建议 - **使用虚拟环境**(推荐) 避免依赖冲突,可用`conda`或`venv`创建独立环境: ```bash conda create -n pytorch1.8 python=3.8 conda activate pytorch1.8 ``` 再执行上述安装命令。 - **依赖库补充** 若需运行计算机视觉项目(如YOLOv5),需安装额外依赖: ```bash pip install matplotlib numpy opencv-python Pillow tqdm ``` 详见引用[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值