回溯算法解题框架之我是搬运工(太难了)
问题:
回溯算法和DFS算法基本可认为是一种算法;抽象的说,解决一个回溯问题,实际上就是遍历
一棵决策树的过程,树的每个叶子结点存放着一个合法答案。将整棵树遍历一遍,把叶子结点上的答案都收集起来,就能得到所有的合法答案。
在一个节点上需要考虑:
- 结束条件:到达决策树底层就无需再做选择
- 选择列表:当前可以做哪些选择
- 路径:目前已经做出的选择
框架:
result = []
void backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择
其核心就是 for 循环里面的递归,在递归调用之前「做选择」,在递归调用之后「撤销选择」,特别简单。
全排列问题解析:
leecode1:
给定一个不含重复数字的数组 nums
,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
解析:
我们在高中的时候就做过排列组合的数学题,我们也知道 n
个不重复的数,全排列共有 n!
个。那么我们当时是怎么穷举全排列的呢?
比方说给三个数 [1,2,3]
,你肯定不会无规律地乱穷举,一般是这样:
先固定第一位为 1,然后第二位可以是 2,那么第三位只能是 3;然后可以把第二位变成 3,第三位就只能是 2 了;然后就只能变化第一位,变成 2,然后再穷举后两位……
我们定义的 backtrack
函数其实就像一个指针,在这棵树上游走,同时要正确维护每个节点的属性,每当走到树的底层叶子节点,其「路径」就是一个全排列。
回忆二叉树遍历:
- 前序遍历的代码在进入某一个节点之前的那个时间点执行
- 后序遍历代码在离开某个节点之后的那个时间点执行
「路径」和「选择」是每个节点的属性,函数在树上游走要正确处理节点的属性,那么就要在这两个特殊时间点搞点动作:
核心框架:
for (选择 : 选择列表){
//做选择
将该选择从选择列表移除;
路径.add(选择);
backtrack(路径,选择列表);
//撤销选择
路径.remove(选择);
将该选择再加入选择列表;
}
代码:
class Solution {
private:
vector<vector<int>> res;
public:
// 主函数,输入一组不重复的数字,返回它们的全排列
vector<vector<int>> permute(vector<int>& nums) {
// 记录「路径」
vector<int> track;
// 「路径」中的元素会被标记为true,避免重复使用
vector<bool> used(nums.size(), false);
backtrack(nums, track, used);
return res;
}
// 路径:记录在 track 中
// 选择列表:nums 中不存在于 track 的那些元素
// 结束条件:nums 中的元素全都在 track 中出现
void backtrack(vector<int>& nums, vector<int>& track, vector<bool>& used) {
// 触发结束条件
if (track.size() == nums.size()) {
res.push_back(track);
return;
}
for (int i = 0; i < nums.size(); i++) {
// 排除不合法的选择
if (used[i]) {
// nums[i] 已经在 track 中,跳过
continue;
}
// 做选择
track.push_back(nums[i]);
used[i] = true;
// 进入下一层决策树
backtrack(nums, track, used);
// 取消选择
track.pop_back();
used[i] = false;
}
}
};
数据结构:
- nums:数字组
- track:记录路径
- used :记录该元素(数组)是否用过
leecode2:全排列2
给定一个可包含重复数字的序列 nums
,按任意顺序 返回所有不重复的全排列。
class Solution {
public:
vector<vector<int>> res;
vector<int> track;
vector<bool> used;
vector<vector<int>> permuteUnique(vector<int>& nums) {
// 先排序,让相同的元素靠在一起
sort(nums.begin(), nums.end());
used = vector<bool>(nums.size(), false);
backtrack(nums);
return res;
}
void backtrack(vector<int>& nums) {
if (track.size() == nums.size()) {
res.push_back(track);
return;
}
for (int i = 0; i < nums.size(); i++) {
if (used[i]) {
continue;
}
// 新添加的剪枝逻辑,固定相同的元素在排列中的相对位置
if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {
// 确保不是访问第一个元素
//如果前面的相邻相等元素没有用过,则跳过
continue;
}
track.push_back(nums[i]);
used[i] = true;
backtrack(nums);
track.pop_back();
used[i] = false;
}
}
};
对比一下之前的标准全排列解法代码,这段解法代码只有两处不同:
1、对 nums
进行了排序。
2、添加了一句额外的剪枝逻辑。
是注意排列问题的剪枝逻辑,和子集/组合问题的剪枝逻辑略有不同:新增了 !used[i - 1]
的逻辑判断。
回答:设输入为 nums = [1,2,2']
,标准的全排列算法会得出如下答案:
[
[1,2,2'],[1,2',2],
[2,1,2'],[2,2',1],
[2',1,2],[2',2,1]
]
显然,这个结果存在重复,比如 [1,2,2']
和 [1,2',2]
应该只被算作同一个排列,但被算作了两个不同的排列。如何去除重复?
答案是,保证相同元素在排列中的相对位置保持不变。
比如说 nums = [1,2,2']
这个例子,保持排列中 2
一直在 2'
前面。
标准全排列算法之所以出现重复,是因为把相同元素形成的排列序列视为不同的序列,但实际上它们应该是相同的;而如果固定相同元素形成的序列顺序,当然就避免了重复。
组合问题解析:
leecode1:
给定两个整数 n
和 k
,返回范围 [1, n]
中所有可能的 k
个数的组合。
你可以按 任何顺序 返回答案。
combine(3, 2)
的返回值应该是:
[ [1,2],[1,3],[2,3] ]
现在你只需要把第 2 层(根节点视为第 0 层)的节点收集起来,就是大小为 2 的所有组合
class Solution {
public:
vector<vector<int>> res;
// 记录回溯算法的递归路径
deque<int> track;
// 主函数
vector<vector<int>> combine(int n, int k) {
backtrack(1, n, k);
return res;
}
void backtrack(int start, int n, int k) {
// base case
if (k == track.size()) {
// 遍历到了第 k 层,收集当前节点的值
res.push_back(vector<int>(track.begin(), track.end()));
return;
}
// 回溯算法标准框架
for (int i = start; i <= n; i++) {
// 选择
track.push_back(i);
// 通过 start 参数控制树枝的遍历,避免产生重复的子集
backtrack(i + 1, n, k);
// 撤销选择
track.pop_back();
}
}
};
子集问题:
给你一个整数数组 nums
,其中可能包含重复元素,请你返回该数组所有可能的子集。
输入 nums = [1,2,2]
,应该输出:
[ [],[1],[2],[1,2],[2,2],[1,2,2] ]
该数组一定不是集合(毕竟不包含重复元素)
这里将另一个2记为2’
结果出现了重复,所以我们需要进行剪枝,如果一个节点有多条值相同的树枝相邻,则只遍历第一条,剩下的都剪掉,不要去遍历
体现在代码上,需要先进行排序,让相同的元素靠在一起,如果发现 nums[i] == nums[i-1]
,则跳过
class Solution {
public:
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
vector<<vector<int>> res;
deque<int> track;
}
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
//前序位置,每个节点的值都是一个子集
sort(nums.begin(), nums.end());
backtrack(nums,0);
return res;
}
void backtrack(vector<int>& nums,int start){
//前序位置
res.push_back(vector<int>(track.begin(),track.end()));
for(int i=start;i<nums.size();i++){
//剪枝逻辑
if(i > start && nums[i] == nums[i-1]){
continue;
}
track.push_back(nums[i]);
backtrack(nums,i+1);
track.pop_back();
}
}
}
};
总结:
一、元素无重不可复选,即 nums
中的元素都是唯一的,每个元素最多只能被使用一次
二、元素可重不可复选,即 nums
中的元素可以存在重复,每个元素最多只能被使用一次
三、元素无重可复选,即 nums
中的元素都是唯一的,每个元素可以被使用若干次,只要删掉去重逻辑即可