在您的代码中实现早停(Early Stopping)可能需要一些创造性的方法,因为DeepXDE API并没有直接提供与`tf.keras.callbacks.EarlyStopping`类似的功能。但是,您可以通过监控验证损失(或其他指标)的变化并在适当时候手动停止训练来模拟早停机制。以下是一个实现早停的基本思路:
1. **分割数据集**:首先,如果您的数据允许,需要将数据集分为训练集和验证集。在DeepXDE中,这可能意味着在创建数据对象时手动指定用于验证的数据点。
2. **训练循环中实现早停逻辑**:在训练过程中,您可以设置一个循环,每次循环训练一定数量的迭代(或“epochs”),然后评估验证集上的性能。
3. **监控验证性能并决定停止训练**:如果验证性能在连续几个循环内没有改善(或改善非常小),则停止训练。
以下是如何在您的代码中实现这一逻辑的一个示例:
```python
# 假设您已经有了分割好的训练集和验证集
# 假设 func_validation 是您的验证集的真实函数
# 设置早停参数
patience = 10 # 无改善的训练循环次数
min_delta = 0.001 # 视为改善的最小变化
# 初始化早停相关变量
best_loss = np.inf
patience_counter = 0
# 训练循环
for i in range(100): # 假设最多循环100次
# 每次循环训练1000个迭代
model.train(iterations=1000)
# 评估验证集上的性能
X_val = geomtime.random_points(1200) # 假设这是您的验证集
y_true_val = func_validation(X_val)
y_pred_val = model.predict(X_val)
val_loss = dde.metrics.l2_relative_error(y_true_val, y_pred_val)
print(f"Validation L2 relative error at loop {i}: {val_loss}")
# 检查是否有足够的改善
if best_loss - val_loss > min_delta:
best_loss = val_loss
patience_counter = 0 # 重置早停计数器
else:
patience_counter += 1
# 检查是否达到早停条件
if patience_counter >= patience:
print("Early stopping triggered.")
break
```
请注意,这个例子假设您已经有了一个方式来评估验证集上的性能(`func_validation`)。在实际应用中,您需要根据具体问题来调整这部分代码,确保它与您的数据集和评估标准相匹配。这个早停实现是基于验证集上的L2相对误差,但您可以根据需要选择不同的指标。