自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(280)
  • 收藏
  • 关注

原创 Python----大模型(量化 Quantization)

大模型量化技术通过降低参数精度来压缩模型,提高推理效率。主要方法包括FP16/INT8/INT4等不同精度的转换,可显著减少存储空间和计算开销。GPTQ采用逐层分组量化策略,结合INT4权重和FP16激活值的混合精度,兼顾效率与精度。AWQ则通过分析激活分布识别关键权重通道,保留少量FP16参数以降低量化误差。两种方法均能在保持模型性能的同时实现4-8倍的压缩比,适用于边缘计算、服务器部署等场景,推动大模型在资源受限设备上的应用。量化技术面临精度损失和硬件适配等挑战,但对模型轻量化具有重要意义。

2025-08-04 14:22:44 737

原创 Python----大模型(从预训练到分布式优化的核心技术解析)

本文系统介绍了大语言模型(LLM)的训练流程与分布式训练优化技术。LLM训练分为四个阶段:预训练(构建基础语言能力)、监督微调(指令遵循)、奖励模型训练(人类偏好对齐)和强化学习微调(优化输出质量)。针对分布式训练,详细分析了数据并行(DP)、张量并行、流水线并行等加速方法,重点比较了DP与分布式数据并行(DDP)的差异,并介绍了DeepSpeed的ZeRO优化技术和混合精度训练方案。这些技术通过合理分配GPU计算资源、优化内存使用和通信效率,显著提升了大规模模型训练的速度和扩展性。

2025-08-03 11:03:56 959

原创 Python----大模型(基于LLaMA Factory角色扮演模型微调)

LLaMAFactory是一个无需编码即可微调大模型的开源平台,支持LLaMA、Qwen等上百种预训练模型,提供多种训练算法(PPO、DPO等)和优化技术(LoRA、QLoRA等)。项目提供WebUI界面,简化了模型微调流程。使用步骤包括:1)安装依赖环境;2)从魔搭社区下载基础模型;3)准备并配置训练数据集;4)通过WebUI进行模型微调、评估和导出。该项目支持从7B到70B参数的模型,并提供多种精度选择(16bit到8bit),适合不同硬件条件的用户。

2025-08-02 11:15:14 934

原创 Python----MCP(MCP 简介、uv工具、创建MCP流程、MCP客户端接入Qwen、MCP客户端接入vLLM)

MCP(ModelContextProtocol)是一个标准化协议,旨在简化AI应用与大语言模型(LLM)的集成。它通过统一接口(类似USB-C)连接各类数据源和工具,降低Agent开发复杂度。开发流程包括:1)使用uv工具管理Python环境和依赖;2)创建MCP客户端基础框架;3)接入云服务(如硅基流动的Qwen模型)或本地vLLM服务。示例代码展示了如何构建交互式聊天客户端,支持通过.env文件配置API密钥和模型参数,实现与不同LLM后端的无缝对接。该系统采用异步编程架构,确保高效资源管理和响应能力

2025-08-01 09:39:57 1560

原创 Python----大模型(Hugging Face)

HuggingFace是领先的NLP开源平台,提供Transformers、Tokenizers和Datasets三大核心工具,支持从模型开发到部署的全流程。其发展历程从2016年的聊天机器人到如今的AI生态系统,托管超50万模型和10万数据集。平台通过标准化工具链和模型共享机制,显著降低NLP开发门槛,支持文本、图像、音频等多模态任务。用户可通过pipeline快速调用模型,或手动加载进行精细控制。文章详细介绍了HuggingFace的特点、本地模型调用方法、任务处理流程及模型微调步骤,展现了其在AI民主

2025-07-31 09:19:36 929

原创 Python----大模型(大模型微调--BitFit、Prompt Tuning、P-tuning、Prefix-tuning、LORA)

本文系统介绍了大模型微调技术及其参数高效微调(PEFT)方法。主要内容包括:1)大模型微调的基本概念、流程与核心价值,强调其在特定领域性能提升、资源效率等方面的优势;2)参数高效微调技术,对比分析BitFit、PromptTuning、PrefixTuning、P-Tuning、LoRA等主流方法的原理、适用场景及实现步骤;3)重点阐述了LoRA及其变体QLoRA的低秩适配机制,通过冻结原始参数、仅训练低秩矩阵实现高效微调。这些方法在不同资源条件和任务需求下,为大型语言模型的领域适配提供了灵活高效的解决方案

2025-07-30 09:09:09 830

原创 Python----大模型(RAG 的智能评估-Ragas)

RAGAs(Retrieval-Augmented Generation Assessment)是一个用于评估RAG(检索增强生成)系统性能的框架。它通过四个核心指标衡量系统表现:Context Precision(上下文精度)。Context Recall(上下文召回)Response Relevancy(响应相关性)Faithfulness(忠诚度)

2025-07-29 10:20:40 831

原创 Python----大模型(基于Fastapi+gradio的对话机器人)

本文介绍了如何搭建一个基于通义千问7B模型的聊天机器人系统。系统采用三部分架构:1) 使用ModelScope下载大模型并启动vLLM服务;2) 通过FastAPI构建后端接口,支持流式响应和参数调节;3) 采用Gradio设计交互界面,包含对话历史管理和生成参数控制。重点讲解了temperature和top_p参数的作用机制及不同场景下的推荐配置值,如代码生成(0.2/0.1)、创意写作(0.7/0.8)等。系统实现了完整的模型部署、API服务和用户交互流程,可作为智能对话应用的开发参考。

2025-07-28 07:39:06 1075 1

原创 Python----Transformer网络搭建

本文详细介绍了Transformer模型的核心组件及实现细节。Transformer是一种基于自注意力和多头注意力机制的神经网络架构,能够高效捕捉序列中的长距离依赖关系。文章依次解析了位置编码(PositionalEncoding)的正弦/余弦实现方法,多头注意力(MultiHeadAttention)的并行计算机制,包含缩放点积注意力的三种计算方式(加性、点积、缩放点积)及其适用场景。同时阐述了编码器层(TransformerEncoderLayer)和解码器层(TransformerDecoderLay

2025-07-28 07:35:56 857

原创 深度学习----视觉里程计

这篇文章介绍了基于深度学习的视觉里程计(DeepVO)系统。首先阐述了视觉里程计的概念、类型分类(按相机配置和处理方法)以及传统几何方法的工作流程。随后详细解析了DeepVOResNet网络结构,该模型采用ResNet提取特征+LSTM建模时序的双帧输入设计,并说明了其训练策略和损失函数。文章还提供了完整的模型训练流程,包括数据准备、优化器配置、训练监控和评估机制。最后展示了预测模型实现,包含轨迹预测、误差计算和可视化分析模块。整个系统实现了从图像序列到位姿估计的端到端映射,在自动驾驶、机器人导航等领域具有

2025-07-28 07:35:23 604

原创 Python----大模型(RAG--(文本加载,文本分割,向量化,向量数据库,检索,文本生成))

本文介绍了基于LangChain框架实现RAG(检索增强生成)技术的完整流程。首先通过TextLoader加载文本文件并进行递归式文本分割,然后使用HuggingFace的BGE中文嵌入模型进行向量化处理。接着构建FAISS向量数据库并实现检索功能,最后结合Qwen2.5-7B大语言模型构建问答系统。整个流程包含文本加载、分割、向量化、数据库构建、检索和生成六个核心步骤,通过链式调用实现了"黑熊精自称为什么"等问题的智能问答功能。该方案展示了如何将检索技术与大模型结合,提升问答系统的准确

2025-07-28 07:34:50 129

原创 Python----大模型(Agent----编写一个简单的Agent)

摘要: React框架是构建智能代理(Agent)的核心逻辑,通过推理(Reasoning)与执行(Acting)的循环实现复杂任务处理。LLM负责推理分析,外部工具(如API)增强执行能力,Prompt设计是关键桥梁。工作流程包括输入接收、推理决策、工具调用、结果反馈及最终输出。示例代码展示了温度查询Agent的实现:定义工具函数(如get_current_temperature),配置工具系统,解析模型输出并执行工具调用,最终整合结果生成响应。该框架结合了LLM的智能推理与工具的精准执行,适用于多样化任

2025-07-28 07:34:21 344

原创 Python----大模型(基于Agent的私人AI助理项目)

本文介绍了一个基于自然语言处理的智能问答系统开发方案。系统采用Gradio搭建WebUI界面,支持聊天对话和文件传输功能。后端通过FastAPI实现,包含天气查询、联网搜索、时间服务和代码执行等Agent工具。系统使用心知天气API和SerpAPI进行数据获取,并通过CodeBox沙箱环境安全执行Python代码。关键技术包括自然语言处理、API集成、前后端交互(Gradio+FastAPI)和代码沙箱隔离,实现了多功能智能问答服务。

2025-07-28 07:33:56 792

原创 Python----FastAPI(表单数据、异步处理、文件上传、请求对象Request)

本文介绍了FastAPI中表单处理、异步编程和文件上传的实现方法。表单处理部分展示了三种方式:直接使用Form()声明字段、结合Pydantic模型和Annotated注解、以及在模型字段中直接使用Form()。异步编程部分对比了async/await和非异步函数的性能差异,演示了异步处理并发I/O操作的优势。文件上传部分涵盖了小文件和大文件的不同处理方式,包括内存存储、磁盘存储、多文件上传和文件验证,推荐使用分块读取和异步写入的方式处理大文件以避免内存溢出。最后还介绍了如何通过Request对象获取完整的

2025-07-27 10:02:52 823

原创 Python----大模型(RAG 的智能评估-LangSmith)

LangSmith是大模型应用开发平台,提供构建、测试、评估和监控LLM应用的全流程工具。文章详细介绍了使用LangSmith进行自动化评估的完整流程:1)安装配置LangSmith环境;2)连接本地LLM模型(如Qwen2.5-7B-Instruct);3)构建RAG应用链;4)定义多种评估器(包括简洁度、余弦相似度等);5)执行自动化评估并上传结果。文中还演示了如何创建数据集、配置评估指标,以及连接向量数据库实现检索增强生成(RAG)。该平台支持开发者从原型到生产环境的全生命周期管理,显著提升大模型应用

2025-07-26 10:35:07 659

原创 Python----大模型( langchain部署简单rag应用)

本文介绍了基于LangChain框架实现的两种本地文档问答系统方案:RetrievalQA链和管道式(LECL)实现。两种方案均采用文本分块处理、bge-large-zh中文嵌入模型、FAISS向量检索和Qwen2.5-7B本地大模型等技术。RetrievalQA链方案更适合快速原型开发,具有模块化封装、自动化流程等优势;而管道式实现则提供了更高的灵活性和可调试性,支持自定义处理流程和中间结果检查。对比分析显示,RetrievalQA链适用于POC验证和标准问答场景,而管道式实现更适合生产环境和复杂逻辑需求

2025-07-25 09:03:16 874

原创 Python----大模型( RAG的向量化(embedding))

摘要:本文介绍了向量化在RAG(检索增强生成)系统中的应用。通过预训练模型(如BERT)将文本转换为高维向量,实现语义检索。主要步骤包括数据预处理、向量生成、存储索引和相似度计算。文章演示了使用bge-large-zh模型进行中文文本向量化,并比较了不同句子的余弦相似度。还展示了如何利用FAISS进行高效向量检索,以及LangChain集成方案。这种方法显著提升了信息检索的语义理解能力,适用于问答系统、推荐系统等多种场景。

2025-07-24 08:56:36 703

原创 Python----FastAPI(请求体、请求参数验证_(Query方式、Path方式、Field方式))

FastAPI提供多种数据验证方式确保API安全性和可靠性。通过Pydantic模型可对请求体进行类型检查和字段验证,支持默认值、必填项等设置。Query方式用于URL查询参数验证,支持长度、范围、别名等规则。Path方式验证路径参数,支持数值范围、正则表达式等条件。Field方式为模型字段添加更详细的验证规则和元数据,支持自定义验证器、枚举类型等。这些验证机制能自动生成文档并返回详细错误信息,结合Uvicorn服务器实现高效开发。验证内容涵盖字符串长度、数值范围、正则匹配等,确保API输入数据的完整性和安

2025-07-23 08:52:19 449

原创 Python----大模型(基于Fastapi+streamlit的机器人对话)

本文介绍了基于FastAPI和Streamlit构建通义千问大模型对话系统的实现方案。首先从魔搭社区下载Qwen2.5-7B-Instruct模型,使用vLLM启动本地服务。然后通过FastAPI构建高性能后端API,支持流式响应和参数调节(温度、top_p等)。最后利用Streamlit开发交互式前端界面,包含历史记录管理、参数控制和实时对话展示功能。系统采用异步通信架构,实现了模型推理、API服务和用户界面的高效协同,为LLM应用提供了完整的开发范例。

2025-07-22 08:59:32 471

原创 Python----大模型( Langchain-agent代理(使用Langchain Agent代理来查询天气信息) )

本文介绍了在Langchain中实现天气预报Agent的开发过程。首先通过心知天气API获取天气数据,包括温度、天气状况等信息。然后使用Langchain框架构建智能代理,该代理能够理解用户查询,自动调用天气API工具获取数据,并生成格式化的响应。开发过程涉及工具类封装、LLM模型配置、提示词模板设计以及代理执行器的创建。最终实现了一个能够智能响应天气查询的自动化系统,如查询"北京"时能够返回"晴朗,33°C"的天气信息。

2025-07-21 08:46:01 316

原创 Python----大模型( Langchain-memory记忆 )

ConversationBufferMemory 适合简单的短对话。ConversationSummaryMemory 适合需要记住长期对话核心内容的场景。ConversationBufferWindowMemory 适合只需要记住最近几轮对话的场景。

2025-07-21 08:44:34 473

原创 Zetane:让深度学习不再抽象,一键3D可视化

Zetane Systems是一家专注于AI模型可视化的加拿大公司,成立于2016年。其核心产品Zetane Engine通过3D可视化技术解决深度学习"黑箱"问题,支持ONNX、Keras等格式模型的可视化分析,提供多维度张量投影、特征图视图等功能。用户可从官网下载Windows/Linux/Mac版本,实现AI模型的交互式探索和内部机制解析。

2025-07-21 08:44:05 403

原创 Python----FastAPI(FastAPI的介绍、路径参数、查询参数)

FastAPI是高性能Python Web框架,基于Starlette和Pydantic,支持异步编程和类型提示。其核心优势包括:接近Node.js/Go的性能(~3000请求/秒)、自动API文档生成、强类型数据验证以及完善的异步支持。相比Flask/Django等同步框架,FastAPI更适合现代高并发场景。基础使用需安装fastapi和uvicorn,通过@app.get定义路由,支持路径参数和查询参数。虽然AI可生成代码,但缺乏业务逻辑适配和运维能力,开发者仍需掌握架构设计、调试和安全优化等核心技能

2025-07-21 08:43:11 870

原创 Python----大模型(Langchain-chain链)

本文介绍了LangChain框架中的几种关键链类型及其应用。首先阐述了"链"的基本概念,即通过有序连接NLP任务构建复杂AI应用的模块化组件。重点解析了LLMChain(大语言模型链)和RetrievalQA(检索问答链)的实现方法,后者结合了向量数据库实现检索增强生成(RAG)。文章详细演示了如何利用HuggingFace嵌入模型和FAISS向量数据库构建知识库问答系统,包括文本加载、分块处理、向量化存储及检索的全流程。最后介绍了通过LCEL表达式自定义链的方法,展示了从提示模板到模型

2025-07-21 08:42:38 293

原创 Python----大模型(Langchain-OutputParser输出解析器)

本文介绍了LangChain中的多种输出解析器及其应用场景:1. 基础OutputParser用于将非结构化自然语言转换为结构化数据。2. 列表解析器(CommaSeparatedListOutputParser和ListOutputParser)将文本转换为Python列表。3. datetime解析器将时间字符串转化为datetime对象。4. 枚举解析器将文本映射到预定义的枚举值。5. 结构化输出解析器(StructuredOutputParser和PydanticOutputParser)将输出转换

2025-07-21 08:42:07 1355

原创 Python----大模型(RAG的评估方法——(精确度和召回率、排名质量、平均准确率))

RAG系统评估方法综述 RAG(检索增强生成)系统性能评估主要分为检索和生成两个维度。检索评估采用精确度、召回率、F1-score等指标衡量相关性,同时引入MRR(平均倒数排名)和MAP(平均精度均值)评估结果排序质量。生成评估则关注文本质量,使用BLEU和ROUGE等指标衡量生成内容与参考答案的匹配度。此外,评估还应关注四个关键维度:响应与参考答案的准确性、响应与输入的相关性、响应与检索文档的匹配度,以及检索文档与查询的关联性。这些综合指标共同构成了RAG系统的完整评估框架。

2025-07-21 08:41:32 719

原创 Python----NLP自然语言处理(Doc2Vec)

Doc2Vec是Google在2014年提出的文档向量表示模型,基于Word2Vec扩展而来。它通过引入文档标签作为额外输入,生成固定长度的文档向量,适用于文本分类、聚类、相似度计算和信息检索等任务。Doc2Vec包含两种训练模式:DBOW(类似Skip-gram)和DM(类似CBOW),分别适用于不同场景。文中以处理《三国演义》文本为例,展示了如何使用jieba分词和gensim库实现Doc2Vec模型训练,并演示了词向量相似度计算和文档相似度检索功能。实验结果显示,模型能够有效捕捉"荆州&qu

2025-07-21 08:41:13 670

原创 Python----NLP自然语言处理(FastText)

FastText是由Facebook开发的高效词向量与文本分类工具,通过创新的子词机制解决了传统词向量模型的局限性。该机制将单词拆分为子词(如中文单字或英文词缀),通过组合子词向量表示完整单词,有效处理未登录词并捕捉形态学信息。在中文处理中,FastText能利用汉字组合特征(如"质量"和"量化"共享"量"的语义),显著提升罕见词处理能力。实践案例展示了FastText在中文文本(《三国演义》)中的训练过程,包括子词参数设置(min_n=2,max

2025-07-20 09:59:29 1127

原创 Python----NLP自然语言处理(Glove)

GloVe是一种基于全局共现统计的词向量模型,相比Word2Vec能更好地捕捉词语间的语义关系。其核心是构建共现矩阵,通过统计单词在上下文窗口内的共现频率来训练词向量。本文展示了使用GloVe处理《三国演义》文本的完整流程:包括jieba分词、数据清洗、构建共现矩阵(窗口大小为10)、训练20维词向量(学习率0.05,10个epochs),以及查询词向量和语义相似词等应用。实验表明,GloVe能有效学习词语的分布式表示,如"主公"的相似词检索。

2025-07-19 09:12:23 840

原创 Python----算法移植(RK3588部署多模态大模型)

本文详细介绍了在RK3588开发板上部署多模态大模型的全流程。主要内容包括:1) 硬件环境要求(Ubuntu20.04虚拟机/RK3588开发板)和软件环境配置(Python3.8、rkllm-toolkit等);2) 模型转换方法,支持LLaMA、ChatGLM3等多种模型及多种量化方式;3) 具体部署步骤:从HuggingFace获取模型、安装转换工具、模型格式转换(ONNX到RKNN/RKLLM)、交叉编译C++程序;4) 性能基准测试数据,展示了不同模型在RK3588上的推理速度、内存占用等指标;5

2025-07-18 08:46:03 1081

原创 Python----NLP自然语言处理(词向量与词嵌入)

本文介绍了词向量与词嵌入的基本概念及其应用。词向量是将词语映射为固定维度数字向量,使计算机能处理文本数据。传统one-hot编码存在维度灾难和无法度量相似性问题,Word2Vec通过分布式表示解决了这些问题,能捕捉词语间的语义关系。文章详细讲解了Word2Vec的两种模型(CBOW和Skip-gram)及其训练流程,包括负采样优化技术。最后以《三国演义》文本为例,展示了词向量训练、相似度计算和类比推理等实际应用。Word2Vec虽存在上下文无关等局限性,但仍是自然语言处理的重要基础技术。

2025-07-17 08:53:08 875

原创 Python----NLP自然语言处理(英文分词器--NLTK)

NLTK是Python中处理英文文本的重要工具包,主要功能包括分词、词形还原、词性标注和停用词过滤等。它通过word_tokenize进行分词,使用WordNetLemmatizer实现词形还原(如将"better"还原为"good"),并支持词性标注(如识别名词、动词)。Text对象提供词频统计、上下文搜索等文本分析功能。此外,NLTK可以过滤常见停用词(如"the","is"),并通过正则表达式实现词组分块(如识别名词短语)

2025-07-16 09:03:05 557

原创 Python----算法移植(RK3588部署deepseek对话大模型)

本文详细介绍了在RK3588开发板上部署大语言模型的完整流程,包括从HuggingFace下载模型、使用RKLLM-Toolkit工具进行模型转换和量化,到在开发板上通过C++程序或Python服务(Flask/Gradio)进行推理部署的全过程。方案支持TinyLLAMA、Qwen等多种模型,并提供性能优化技巧,如NPU定频和量化选择,最终实现在边缘计算设备上高效运行大语言模型,适用于低功耗、高性能的AI应用场景。

2025-07-15 08:51:54 1266

原创 Python----NLP自然语言处理(中文分词器--jieba分词器)

本文系统介绍了中文文本预处理的核心步骤,重点讲解了jieba分词工具的功能与应用。主要内容包括:分词处理:对比全模式(高速但冗余)和精确模式(高精度)的分词效果,演示基础分词操作;词典优化:通过添加自定义词典解决专有名词(如"百战程序员")的分词歧义问题;关键词提取:基于TF-IDF算法实现文本关键词抽取(如《三国演义》选段中的"玄德"、"张角"等),支持停用词过滤优化结果;词性标注:结合posseg模块实现词语分类(如名词、动词等),提供完整的词性标签对照表。文中通过代码实例展示了jie

2025-07-14 09:20:56 842

原创 Python----算法移植(将YOLOV8移植到RK3588)

本文详细介绍了利用Rockchip的RKNN工具链(包括RKNN-Toolkit2、RKNN-Toolkit-Lite2、RKNN Runtime和RKNPU驱动)在NPU硬件平台上部署YOLO模型的完整流程,涵盖环境配置(Python 3.8+特定依赖库)、模型转换(ONNX到RKNN格式)、多线程推理优化、实时视频处理实现(含后处理算法和性能统计)以及自定义模型适配方法,为开发者提供了从环境搭建到部署优化的全链路技术方案,特别强调版本兼容性和边缘计算场景的性能调优策略。

2025-07-14 09:19:59 551

原创 Python----大模型( 常见向量数据库的介绍 )

本文比较了三种文本向量相似度计算方法(余弦相似度、内积和L2距离)并介绍了三种主流向量数据库。Pinecone提供易用API和实时更新功能;FAISS是高效的CPU/GPU开源库;Chroma支持多类型数据存储。通过示例代码演示了各数据库的向量嵌入生成、索引创建和相似度查询流程,其中Pinecone和Chroma使用余弦相似度,FAISS支持内积和L2距离计算。三种工具均能有效实现语义相似性搜索,开发者可根据项目需求选择合适方案。

2025-07-14 09:18:35 470

原创 Python----大模型( RAG的文本分割,文本分割方法 )

RAG模型中的文本分割技术及其应用 RAG(检索增强生成)模型通过合理分割文本来提高检索效率与生成质量。文本分割在RAG中具有关键作用:提升检索精度、优化信息匹配、增强生成连贯性并降低计算复杂度。主要分割方法包括:1)字符分割,按固定长度划分;2)递归字符分割,根据优先级对分隔符进行多级细分;3)特定文档分割(如Markdown),利用文档结构信息。实践表明,结合中文标点的递归分割法能有效保持语义连贯性,为中文NLP任务提供更优的文本处理方案。

2025-07-14 09:18:19 740

原创 Python----大模型(RAG--RAG的介绍,RAG的工作流程,RAG的文本加载 )

RAG(检索增强生成)是一种结合检索与生成技术的自然语言处理方法,通过外部知识库增强语言模型的输出准确性。其核心包含检索器(从知识库检索相关文档)和生成器(基于检索信息生成回答)。工作流程包括:检索器将用户问题转换为向量并搜索相似文档,生成器结合检索结果生成最终答案。LangChain提供了多种文本加载器(如TXT、CSV、PDF、Markdown、JSON、HTML等),支持从不同文件格式加载和分割内容,便于后续处理和检索。该方法动态扩展模型知识库,适用于需要实时更新或专业知识的场景。

2025-07-14 09:17:59 816

原创 Python----NLP自然语言处理(NLP自然语言处理解释,NLP的发展历程)

自然语言处理(NLP)是人工智能的重要分支,旨在让计算机理解、生成和处理人类语言。其发展经历了四个阶段:1950-1980年代的规则驱动阶段依赖语言学家手工编写规则;1990年代进入统计学习阶段,利用概率模型处理语言;2013年后深度学习兴起,采用神经网络自动学习语言特征;2018年至今进入预训练模型时代,BERT、GPT等大型语言模型展现出强大能力。NLP广泛应用于机器翻译、文本分析、语音识别、智能对话等领域,但也面临计算成本高、可解释性差等挑战。

2025-07-14 09:17:36 1018

原创 Python----OpenCV(图像分割——什么是图像分割,基于阈值化的分割,基于自适应阈值图像分割 ,基于边缘的图像分割)

图像分割是计算机视觉中的关键技术,旨在将图像划分为具有特定语义的区域。主要分为三类:语义分割(像素级分类)、实例分割(区分同类不同个体)和全景分割(结合前两者)。其应用广泛,如自动驾驶、医疗影像分析等,但也面临标注成本高、计算资源消耗大等挑战。

2025-07-14 09:17:03 1233

Python-目标检测(yolov5-7.0安装及训练细胞)

Python----目标检测(yolov5-7.0安装及训练细胞)

2025-05-18

基于PyQt5的LeNet5的手写体数字识别

基于PyQt5的LeNet5的手写体数字识别

2025-05-15

Python-神经网络(基于ResNet的汽车分类)

Python----神经网络(基于ResNet的汽车分类)

2025-05-06

Python-神经网络(基于DNN的风电功率预测)

基于DNN的风电功率预测

2025-04-29

Python-神经网络(基于Alex Net的花卉分类项目)

基于Alex Net的花卉分类

2025-04-29

Python-神经网络(基于AlexNet的猫狗分类项目)

Python-神经网络(基于AlexNet的猫狗分类项目)

2025-04-27

Python-深度学习(基于DNN的吃鸡预测)

Python-深度学习(基于DNN的吃鸡预测)

2025-04-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除