
前言
数据驱动测试:
- 避免编写重复代码
- 数据与测试脚本分离
- 通过使用数据驱动测试,来验证多组数据测试场景
- 通常来说,多用于单元测试和接口测试
ddt介绍
Data-Driven Tests(DDT)即数据驱动测试,可以实现不同数据运行同一个测试用例。ddt本质其实就是装饰器,一组数据一个场景。
ddt模块包含了一个类的装饰器ddt和三个个方法的装饰器:
data:包含多个你想要传给测试用例的参数,可以为列表、元组、字典等;
file_data:会从json或yaml中加载数据;
unpack:分割元素,如以下示例:
@data([a,d],[c,d])
如果没有@unpack,那么[a,b]当成一个参数传入用例运行
如果有@unpack,那么[a,b]被分解开,按照用例中的两个参数传递
安装
pip install ddt
使用data装饰器
传递整体列表,字典、元组
1
2
3
4
5
6
7
8
9
10
11
12
13
|
import unittest
from ddt import ddt,data,unpack
def add(a,b):
return a + b
@ddt
class MyTest(unittest.TestCase):
# @data([1,2,3,4,5,6,7])
@data ({ "a" : "1" , "b" : 2 })
# @data((1,2,3))
def test( self ,data):
print (data)
if __name__ = = '__main__' :
unittest.main(verbosity = 2 )
|
嵌套列表、元组、字典的整体传递方式
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
import unittest
from ddt import ddt,data,unpack
def add(a,b):
return a + b
@ddt
class MyTest(unittest.TestCase):
# @data(*[[1,2,3],[1,0,1],[0,0,0],[1,1,3]])
# @data(*[{"a":1}, {"a":2}, {"a":3}, {"a":4}])
@data ( * [( 1 , 5 ), ( 4 , 2 ), ( 6 , 7 ), ( 5 , 6 )])
def test( self ,data):
print (data)
if __name__ = = '__main__' :
unittest.main(verbosity = 2 )
|
使用unpack装饰器
unpack 依次传递元组
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
import unittest
from ddt import ddt,data,unpack
def add(a,b):
return a + b
@ddt
class MyTest(unittest.TestCase):
@data (( 1 , 2 , 3 ),( 1 , 0 , 1 ),( 0 , 0 , 0 ),( 1 , 1 , 3 ))
@unpack
def test( self ,a,b,c):
print (a,b,c)
if a + b = = c:
print ( True )
else :
print ( False )
if __name__ = = '__main__' :
unittest.main(verbosity = 2 )
|
输出结果:
1 2 3
True
1 0 1
True
0 0 0
True
1 1 3
False
依次传递字典
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
import unittest
from ddt import ddt,data,unpack
def add(a,b):
return a + b
@ddt
class MyTest(unittest.TestCase):
@data ({ "a" : 1 , "b" : 1 , "c" : 2 },
{ "a" : 0 , "b" : 0 , "c" : 0 },
{ "a" : - 1 , "b" : 1 , "c" : 0 })
@unpack
def test( self ,a,b,c):
print (a,b,c)
if a + b = = c:
print ( True )
else :
print ( False )
if __name__ = = '__main__' :
unittest.main(verbosity = 2 )
|
输出结果:
1 1 2
True
0 0 0
True
-1 1 0
True
依次传递列表
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
import unittest
from ddt import ddt,data,unpack
def add(a,b):
return a + b
@ddt
class MyTest(unittest.TestCase):
@data ([ 1 , 2 , 3 ],[ 1 , 0 , 1 ],[ 0 , 0 , 0 ],[ 1 , 1 , 3 ])
@unpack
def test( self ,a,b,c):
print (a,b,c)
if a + b = = c:
print ( True )
else :
print ( False )
if __name__ = = '__main__' :
unittest.main(verbosity = 2 )
|
输出结果:
1 2 3
True
1 0 1
True
0 0 0
True
1 1 3
False
使用file_data装饰器
ddt支持从文件中加载数据,@file_data()装饰器会从json或yaml中加载数据。只有以“.yml” 和 “.yaml” 结尾的文件被加载为Yaml文件。所有其他格式文件都作为json文件加载,比如txt。
传递json数据
test.json文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
{
"case1" : {
"a" : 1,
"b" : 1,
"c" : 2
},
"case2" : {
"a" : -1,
"b" : 1,
"c" : 0
},
"case3" : {
"a" : 0,
"b" : 0,
"c" : 0
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
import unittest
from ddt import ddt,file_data
def add(a,b):
return a + b
@ddt
class MyTest(unittest.TestCase):
@file_data ( "test.json" )
def test( self , a, b, c):
print (a,b,c)
if __name__ = = '__main__' :
unittest.main(verbosity = 2 )
|
传递多层json文件
test.json文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
{
"case1" : {
"data" : {
"a" : 1,
"b" : 1
},
"result" : 2
},
"case2" : {
"data" : {
"a" : 0,
"b" : 1
},
"result" : 1
},
"case3" : {
"data" : {
"a" : 0,
"b" : 0
},
"result" : 0
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
import unittest
from ddt import ddt,file_data
def add(a,b):
return a + b
@ddt
class MyTest(unittest.TestCase):
@file_data ( "test.json" )
def test( self ,data,result):
print (data,result)
if __name__ = = '__main__' :
unittest.main(verbosity = 2 )
|
传递yml数据
yml 需要安装yml(pip install PyYAML)
test.yml

1
2
3
4
5
6
7
|
def add(a,b):
return a + b
@ddt
class MyTest(unittest.TestCase):
@file_data ( "test.yml" )
def test( self ,a,b,c):
print (a,b,c)
|
最后感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走! 希望能帮助到你!【100%无套路免费领取】

