数据分析笔记(1)

1.1.2.1绝对路径、相对路径

(1)相对路径,就是在同一个网站下,不同文件之间的的位置定位。引用的文件是相对当前网页的位置而言的,根据这个相对位置得出相对路径。
(2)绝对路径,指的是完整的路径。—Baidu

以文中提到的两种方法为例:

#相对路径
df = pd.read_csv('train.csv')
df.head(3)
#绝对路径
df = pd.read_csv('/Users/chenandong/Documents/datawhale数据分析每个人题目设计/招募阶段/第一单元项目集合/train.csv')
df.head(3)

其中下方阅读报错,依据os.getcwd()得其路径:
‘c:/Users/69434/Desktop/Program/组队学习/数据分析/hands-on-data-analysis-master/第一单元项目集合/train.csv’
修改路径后成功

注:python 的 os
模块
可提供非常丰富的方法用来处理文件和目录。

若将csv文件放入绝对路径中的名为1 的文件夹中,绝对路径小小修改一下也可成功读出
在这里插入图片描述
1.1.2.2read_csv和read_table
当我们用的不是read_csv 而是read_table加载数据时:
在这里插入图片描述

二者输出不同的原因在于定界符不同。
在read_csv()中,读取csv文件,定界符为,
在read_table()中,读取tsv文件,定界符为\ t

但仍可以通过区别符设置的方法来转换

df_tsv_sep = pd.read_csv('./data/03/sample_header_index.tsv', 
							index_col=0, sep='\t')
print(df_tsv_sep)
#         a   b   c   d
# ONE    11  12  13  14
# TWO    21  22  23  24
# THREE  31  32  33  34
————————————————
此代码转载自CSDN博主「饺子大人」
https://blog.csdn.net/qq_18351157/article/details/104749945

pandas.chunker函数主要用于逐块读取数据。

chunker = pd.read_csv('train.csv', chunksize=50)#每50个数据读取一次
for chunk in chunker:
    print(chunk) #输出形式为每五十个数据一次
1. 用户与身体信息管理模块 用户信息管理: 注册登录:支持手机号 / 邮箱注册,密码加密存储,提供第三方快捷登录(模拟) 个人资料:记录基本信息(姓名、年龄、性别、身高、体重、职业) 健康目标:用户设置目标(如 “减重 5kg”“增肌”“维持健康”)及期望周期 身体状态跟踪: 体重记录:定期录入体重数据,生成体重变化曲线(折线图) 身体指标:记录 BMI(自动计算)、体脂率(可选)、基础代谢率(根据身高体重估算) 健康状况:用户可填写特殊情况(如糖尿病、过敏食物、素食偏好),系统据此调整推荐 2. 膳食记录与食物数据库模块 食物数据库: 基础信息:包含常见食物(如米饭、鸡蛋、牛肉)的名称、类别(主食 / 肉类 / 蔬菜等)、每份重量 营养成分:记录每 100g 食物的热量(kcal)、蛋白质、脂肪、碳水化合物、维生素、矿物质含量 数据库维护:管理员可添加新食物、更新营养数据,支持按名称 / 类别检索 膳食记录功能: 快速记录:用户选择食物、输入食用量(克 / 份),系统自动计算摄入的营养成分 餐次分类:按早餐 / 午餐 / 晚餐 / 加餐分类记录,支持上传餐食照片(可选) 批量操作:提供常见套餐模板(如 “三明治 + 牛奶”),一键添加到记录 历史记录:按日期查看过往膳食记录,支持编辑 / 删除错误记录 3. 营养分析模块 每日营养摄入分析: 核心指标计算:统计当日摄入的总热量、蛋白质 / 脂肪 / 碳水化合物占比(按每日推荐量对比) 微量营养素分析:检查维生素(如维生素 C、钙、铁)的摄入是否达标 平衡评估:生成 “营养平衡度” 评分(0-100 分),指出摄入过剩或不足的营养素 趋势分析: 周 / 月营养趋势:用折线图展示近 7 天 / 30 天的热量、三大营养素摄入变化 对比分析:将实际摄入与推荐量对比(如 “蛋白质摄入仅达到推荐量的 70%”) 目标达成率:针对健
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值