1.Softmax层
当需要多分类的时候,会输出一个分布,这些分布需要满足P(y = i) >=0 和 所有的P值加起来=1
,使用softmax可以实现。
要注意的是,softmax本质上和sigmoid一样也是一个激活函数。
sigmoid用于二分类,softmax用于多分类。
1.1softmax的函数表示
示例
1.2 损失函数
关于代码中的ToTensor
2. 代码实现
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(), # 转为张量
# 归一化,切换到01分布进行训练(神经网络更适用),两个值分别是均值和方差,用于进行分布转换
transforms.Normalize((0.1307, ), (0.3081, )) # 注意这里说的不是取值范围,而是以0为均值,1为标准差的分布
])
train_dataset = datasets.MNIST(
root='/Users/yahoo/Downloads',
train=True,
download=False,
transform=transform
)
train_loader = DataLoader(
train_dataset,
shuffle=True,
batch_size=batch_size
)
test_dataset = datasets.MNIST(
root='/Users/yahoo/Downloads',
train=True,
download=False,
transform=transform
)
test_loader = DataLoader(
test_dataset,
shuffle=True,
batch_size=batch_size
)
class Net(torch.nn.Module):
def __init__(self):
super().__init__()
self.l1 = torch.nn.Linear(784, 512) # 每层都是全连接
self.l2 = torch.nn.Linear(512, 256)
self.l3 = torch.nn.Linear(256, 128)
self.l4 = torch.nn.Linear(128, 64)
self.l5 = torch.nn.Linear(64, 10)
def forward(self,x):
x = x.view(-1,784)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x) # 最后一层不激活
model = Net()
criterion = torch.nn.CrossEntropyLoss() # 打包好的交叉熵损失
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 带冲量效果更好,可以冲破局部最小值,尽可能找到全局最优解
def train(epoch):
running_loss = 0.0
for batch_idx,data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad() # 每轮先置0
# forward + backward + update
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx+1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad(): # 表明不用计算梯度
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1) # 横向为第一个维度,意指从每行中找出最大值及其下标
total += labels.size(0)
correct += (predicted == labels).sum().item() # 比较下标与预测值的结果是否接近,求和即是看我们猜对了多少个
print('Accuracy on test set: %d %%' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
输出结果
[1, 300] loss: 2.213
[1, 600] loss: 0.892
[1, 900] loss: 0.446
Accuracy on test set: 89 %
[2, 300] loss: 0.313
[2, 600] loss: 0.268
[2, 900] loss: 0.224
Accuracy on test set: 94 %
···························
[9, 300] loss: 0.044
[9, 600] loss: 0.040
[9, 900] loss: 0.043
Accuracy on test set: 99 %
[10, 300] loss: 0.035
[10, 600] loss: 0.033
[10, 900] loss: 0.033
Accuracy on test set: 99 %