【PyTorch深度学习实践】08_Softmax分类器(多分类)

文章介绍了Softmax层在多分类问题中的应用,详细展示了如何用PyTorch构建神经网络模型,包括数据预处理、模型定义、损失函数(CrossEntropyLoss)和优化器(SGD)。通过训练MNIST数据集,模型达到高精度的分类结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.Softmax层

当需要多分类的时候,会输出一个分布,这些分布需要满足P(y = i) >=0 和 所有的P值加起来=1,使用softmax可以实现。

要注意的是,softmax本质上和sigmoid一样也是一个激活函数。
sigmoid用于二分类,softmax用于多分类。

1.1softmax的函数表示

在这里插入图片描述
示例

在这里插入图片描述

1.2 损失函数

在这里插入图片描述
在这里插入图片描述
关于代码中的ToTensor
在这里插入图片描述

2. 代码实现

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),  # 转为张量
    # 归一化,切换到01分布进行训练(神经网络更适用),两个值分别是均值和方差,用于进行分布转换
    transforms.Normalize((0.1307, ), (0.3081, ))  # 注意这里说的不是取值范围,而是以0为均值,1为标准差的分布
])

train_dataset = datasets.MNIST(
    root='/Users/yahoo/Downloads',
    train=True,
    download=False,
    transform=transform
)

train_loader = DataLoader(
    train_dataset,
    shuffle=True,
    batch_size=batch_size
)

test_dataset = datasets.MNIST(
    root='/Users/yahoo/Downloads',
    train=True,
    download=False,
    transform=transform
)

test_loader = DataLoader(
    test_dataset,
    shuffle=True,
    batch_size=batch_size
)

class Net(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.l1 = torch.nn.Linear(784, 512)  # 每层都是全连接
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)

    def forward(self,x):
        x = x.view(-1,784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)        # 最后一层不激活

model = Net()

criterion = torch.nn.CrossEntropyLoss()  # 打包好的交叉熵损失
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 带冲量效果更好,可以冲破局部最小值,尽可能找到全局最优解

def train(epoch):
    running_loss = 0.0
    for batch_idx,data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad() # 每轮先置0

        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx+1, running_loss / 300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad():  # 表明不用计算梯度
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)  # 横向为第一个维度,意指从每行中找出最大值及其下标
            total += labels.size(0)
            correct += (predicted == labels).sum().item()  # 比较下标与预测值的结果是否接近,求和即是看我们猜对了多少个
    print('Accuracy on test set: %d %%' % (100 * correct / total))


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

输出结果

[1300] loss: 2.213
[1600] loss: 0.892
[1900] loss: 0.446
Accuracy on test set: 89 %
[2300] loss: 0.313
[2600] loss: 0.268
[2900] loss: 0.224
Accuracy on test set: 94 %
···························
[9300] loss: 0.044
[9600] loss: 0.040
[9900] loss: 0.043
Accuracy on test set: 99 %
[10300] loss: 0.035
[10600] loss: 0.033
[10900] loss: 0.033
Accuracy on test set: 99 %
引用\[1\]:损失函数是用来告诉我们当前分类器性能好坏的评价函数,是用于指导分类器权重调整的指导性函数,通过该函数可以知道该如何改进权重系数。通俗都来说一组参数(W,b)对应一个损失L,一般的损失越小模型越好,我们目标是通过各种优化,使损失达到最优值(不一定最小是最优的)。引用\[2\]:交叉熵损失衡量分类模型的性能,其输出是介于 0 和 1 之间的概率值。交叉熵损失随着预测概率与实际标签的偏离而增加。因此,当实际观察标签为 1 时预测 0.012 的概率模型不好,并导致高损失值。完美模型的对数损失为 0。cross-entropy一般再softmax函数求得结果后再用。\[3\]根据给出的引用内容,softmax分类器是一种常用的分类器,它使用softmax函数将输入转换为概率分布,并使用交叉熵损失函数来衡量模型的性能。softmax函数将输入向量的每个元素转换为介于0和1之间的概率值,这些概率值的总和为1。交叉熵损失函数衡量模型的预测概率与实际标签之间的偏离程度,当预测概率与实际标签相符时,损失函数的值较小,模型性能较好。通过优化损失函数,我们可以调整模型的权重系数,以提高模型的准确性。 #### 引用[.reference_title] - *1* *2* [Softmax分类器及交叉熵损失(通俗易懂)](https://blog.csdn.net/Peyzhang/article/details/125418625)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [【PyTorch深度学习实践08_Softmax分类器多分类)](https://blog.csdn.net/weixin_56956615/article/details/128696510)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值