应用服务接口第二次请求一直pending问题

一、问题背景

升级内容发布到灰度环境,验证相关服务,查看接口调用日志,发现第一次请求正常,第二次相同接口请求就一直pending,其他服务也是如此

二、问题排查过程

1、一开始怀疑是数据库打满了,导致响应阻塞,后来查看正常
2、排查后端服务日志,发现第二次请求都没有接收到,说明和后端服务也没有关系
3、后面仔细看pending的接口请求header报504,怀疑是nginx导致的问题
在这里插入图片描述

三、解决方案

运维配置的nginx有问题,待解决

四、总结

如果业务系统中使用了 Nginx 作为网关,出现第一次调用接口正常,第二次一直 pending 的情况,网关出现问题是有可能的,以下是一些相关的原因及分析:

  • 连接池配置问题

原因:Nginx 可能配置了连接池来管理与后端服务的连接。如果连接池的大小设置不合理,第一次调用接口时可能创建了新连接并正常使用,但第二次调用时连接池已满,且没有可用连接被释放,新的请求就会处于等待状态,一直 pending。或者连接池中的连接在第一次使用后出现异常,但没有被正确处理,导致第二次使用时出现问题。
解决方案:检查 Nginx 连接池的配置参数,如keepalive指令设置的连接数等,根据实际业务需求合理调整连接池大小。同时,确保连接池中的连接在使用后能正确释放和回收,对于异常连接要及时进行处理和清理。

  • 缓存设置问题

原因:Nginx 可能配置了缓存功能,第一次请求的结果被缓存下来,第二次请求时 Nginx 尝试从缓存中获取数据。如果缓存数据损坏、不完整或者缓存更新机制出现问题,可能导致 Nginx 无法正确返回缓存数据,进而使请求一直处于 pending 状态。
解决方案:检查 Nginx 的缓存配置,包括缓存区域的大小、缓存时间、缓存更新策略等。可以尝试清理缓存数据,观察问题是否解决。如果是缓存更新机制的问题,需要调整相关配置,确保缓存数据能及时、正确地更新。

  • 请求限流或限速设置

原因:Nginx 可能设置了请求限流或限速策略,以保护后端服务免受过多请求的冲击。第一次请求可能在限流或限速范围内正常处理,但第二次请求由于并发请求数增加或者请求频率超过了限制,被 Nginx 暂时挂起,导致一直 pending。
解决方案:检查 Nginx 的限流或限速配置指令,如limit_req_zone和limit_rate等,分析当前的请求流量是否超过了设置的阈值。如果是,根据实际情况调整限流或限速策略,或者增加后端服务的处理能力,以满足业务需求。

  • Nginx 配置错误

原因:Nginx 的配置文件中可能存在一些错误或不恰当的设置,影响了接口的正常调用。例如,server块、location块的配置参数错误,导致第二次请求的路由或处理出现问题;或者proxy_pass指令配置的后端服务地址不正确,使得请求无法正确转发。
解决方案:仔细检查 Nginx 的配置文件,确保各个指令的参数设置正确,路由规则符合业务需求。可以使用nginx -t命令来检查配置文件的语法正确性,并根据错误提示进行修改。如果怀疑配置文件中的某些部分存在问题,可以逐步注释掉相关配置,进行测试,以定位问题所在。

  • Nginx 进程或线程问题

原因:Nginx 在处理请求时,可能出现进程或线程挂起、阻塞等异常情况。例如,某个工作进程在处理第一次请求后进入了一个异常状态,导致后续的请求无法被正常处理,一直处于 pending 状态。这可能是由于 Nginx 本身的代码缺陷、内存泄漏或者受到外部因素(如系统资源不足、信号干扰等)的影响。
解决方案:查看 Nginx 的错误日志文件,查找是否有关于进程或线程异常的记录。同时,监控系统的资源使用情况,如 CPU、内存、磁盘 I/O 等,确定是否存在资源不足的问题。如果发现 Nginx 进程存在异常,可以尝试重启 Nginx 服务,并观察问题是否重现。如果问题仍然存在,可以考虑升级 Nginx 版本,或者向 Nginx 社区寻求帮助。

<think>好的,我需要帮助用户理解在使用kube-state-metrics(通过kube-prometheus-stack安装)监控Kubernetes集群后,如何进一步监控应用内部的状态接口可用性。首先,用户已经知道kube-state-metrics提供了集群资源的基本监控,比如Pod状态、部署情况等,现在他们想补充应用级别的指标,比如Java应用的特定状态接口健康检查。 首先,我需要确认用户的基本理解是否正确。用户提到“默认会装kube-state-metrics”,确实如此,kube-prometheus-stack通常包括这个组件,用于收集Kubernetes对象的状态信息。这些默认的报警规则已经覆盖了Pod失败、部署问题等基础故障,用户现在需要扩展监控到应用内部。 接下来,用户的问题分为两部分:监控应用内部状态(例如Java应用的pod.deploy状态)和接口可用性。我需要解释如何为应用添加自定义指标,并设置接口健康检查的监控。 对于应用内部状态,常见的做法是在应用中集成Prometheus客户端库(如Java的Micrometer),暴露自定义指标。这些指标可以通过Service和ServiceMonitor被Prometheus自动抓取。需要说明步骤,比如添加依赖、定义指标、创建ServiceMonitor资源。 关于接口可用性,用户可能指的是HTTP接口的健康检查。Prometheus的黑盒导出器(blackbox-exporter)可以用于监控HTTP、HTTPS等端点的可用性。需要解释如何配置Probe资源(如果使用Prometheus Operator)或者直接使用blackbox-exporter进行探测,并设置相应的报警规则。 另外,需要提醒用户注意资源定义,如ServiceMonitor的标签匹配,以及报警规则的最佳实践,比如根据SLO定义合理的阈值。可能还需要提到其他监控工具如Grafana用于可视化,但用户主要关注Prometheus的集成。 需要确保回答结构清晰,分步骤说明,覆盖用户提到的两个方面,并验证用户可能存在的疑问,比如是否需要额外安装组件,或者如何避免重复监控。同时,保持语言简洁,避免技术术语过多,但需要准确使用术语如ServiceMonitor、Probe等。 最后,确认是否需要更详细的步骤或示例,比如YAML配置片段,但根据用户问题,可能不需要深入代码,而是概念性指导。总结时强调补充应用层监控的必要性,以及如何与现有的集群监控结合,形成完整的监控体系。</think>### 分阶段解析监控体系的构建逻辑 #### 一、**基础层监控(已覆盖)** 通过 `kube-state-metrics` 采集的指标(如 `kube_pod_status_phase`, `kube_deployment_status_replicas` 等)已涵盖以下核心监控项: 1. **Pod生命周期状态**:Pending/Failed/Unknown 状态直接触发告警 2. **控制器健康状态**:Deployment/StatefulSet的副本数异常(如可用副本 < 期望值) 3. **资源基础指标**:CPU/内存请求与限制(需配合 metrics-server) #### 二、**应用层监控补充(需扩展)** 针对业务应用内部状态,需补充以下两类监控: --- ### **第一类:应用内部状态暴露(如Java应用)** **实现方式**: 1. **集成Prometheus客户端库** - Java应用使用 **Micrometer** 或 **Prometheus Java Client** 暴露自定义指标 - 示例指标: ```promql # 自定义业务指标 myapp_requests_total{path="/api/v1/data",status="200"} # JVM状态(需micrometer-jvm依赖) jvm_memory_used_bytes{area="heap"} ``` 2. **配置ServiceMonitor自动发现** ```yaml # 示例ServiceMonitor(需Prometheus Operator) apiVersion: monitoring.coreos.com/v1 kind: ServiceMonitor metadata: name: java-app-monitor labels: release: prometheus-stack # 与Prometheus实例匹配 spec: endpoints: - port: http-metrics # 对应Service的端口名称 path: /actuator/prometheus selector: matchLabels: app: java-app # 匹配目标Service的标签 ``` **关键验证点**: - 检查 `/actuator/prometheus` 端点是否返回指标 - 检查Prometheus Targets页面是否包含该抓取任务 --- ### **第二类:接口可用性监控(黑盒探测)** **实现方式**: 1. **使用Prometheus黑盒导出器(blackbox-exporter)** - 部署blackbox-exporter并配置Probe: ```yaml # 示例Probe(Prometheus Operator) apiVersion: monitoring.coreos.com/v1alpha1 kind: Probe metadata: name: api-healthcheck spec: interval: 60s module: http_2xx prober: url: blackbox-exporter:9115 targets: staticConfig: static: - http://java-app:8080/healthz ``` 2. **定义告警规则** ```yaml # 示例告警规则(连续3次探测失败) - alert: APIEndpointDown expr: probe_success{job="blackbox"} == 0 for: 3m annotations: summary: "接口不可用: {{ $labels.instance }}" ``` **关键验证点**: - 检查 `probe_success` 指标是否生成 - 测试手动触发接口故障观察告警状态 --- ### **监控体系分层对比表** | 层级 | 监控对象 | 典型工具/指标 | 告警响应时效性 | |---------------------|----------------------|---------------------------------------|----------------| | 基础设施层 | 节点/网络/存储 | `kube_node_status_ready`, 磁盘使用率 | 分钟级(P1) | | Kubernetes资源层 | Pod/Deployment/Service | `kube_pod_status_phase`, HPA状态 | 分钟级(P1) | | **应用运行时层** | JVM/GC/线程池 | `jvm_memory_used`, `tomcat_sessions` | 5分钟内(P2) | | **业务逻辑层** | API成功率/订单量 | `http_requests_total`, 业务自定义指标 | 按SLO定义 | | **用户体验层** | 页面加载时间 | Synthetic Monitoring(如Grafana合成监控) | 实时(P0) | --- ### **操作建议** 1. **优先级排序** - 先确保基础设施层和Kubernetes资源层的告警全覆盖 - 再逐步补充应用级指标(如JVM内存泄漏检测) - 最后实现业务逻辑层监控(如支付接口成功率) 2. **指标分类管理** - 使用 `label` 区分环境(prod/staging)和重要性等级(critical/medium) - 示例: ```promql sum(rate(http_requests_total{env="prod",severity="critical"}[5m])) by (service) ``` 是否需要具体示例说明如何为Spring Boot应用配置Micrometer?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值