C语言经典算法之判断素数

本文介绍了在C语言中使用暴力穷举法、优化的检查方式(包括至平方根和排除2、3因子)以及埃拉托斯特尼筛法判断素数的方法。同时讨论了C语言在实现这些算法时的时空复杂度,以及C语言的优缺点,如高效性、简洁性与内存管理挑战等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

A.建议:

B.简介:

一 代码实现

方法一(暴力穷举法)

方法二(优化至sqrt(n))

方法三(埃拉托斯特尼筛法或仅对小于n/2的数进行判断)

二 时空复杂度

方法一

方法二

方法三

三 C语言的优缺点

A.优点:

B.缺点:


前言

A.建议:

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

B.简介:

在C语言中,判断一个数是否为素数的算法通常涉及遍历一定范围内的整数以检查该数是否有其他因子。

一 代码实现

一些基于不同效率和优化程度的C语言实现:

方法一(暴力穷举法)
#include <stdio.h>

bool isPrime(int n) {
    if (n <= 1)
        return false;
    else if (n == 2)
        return true;
    for (int i = 2; i * i <= n; i++) { // 可以优化到i <= sqrt(n),但这里使用更安全的i * i <= n避免浮点运算
        if (n % i == 0)
            return false;
    }
    return true;
}

int main() {
    int num;
    printf("Enter a number: ");
    scanf("%d", &num);
    if (isPrime(num))
        printf("%d is a prime number.\n", num);
    else
        printf("%d is not a prime number.\n", num);
    return 0;
}
方法二(优化至n^2
#include <stdio.h>
#include <math.h> // 引入数学库以使用sqrt函数

bool isPrimeOptimized(int n) {
    if (n <= 1)
        return false;
    if (n == 2 || n == 3)
        return true;
    if (n % 2 == 0 || n % 3 == 0)
        return false;
    for (int i = 5; i * i <= n; i += 6) { // 只需检查奇数,并且跳过6的倍数
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
    }
    return true;
}

int main() {
    int num;
    printf("Enter a number: ");
    scanf("%d", &num);
    if (isPrimeOptimized(num))
        printf("%d is a prime number.\
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值