- 博客(30)
- 资源 (5)
- 问答 (3)
- 收藏
- 关注
原创 SDS(Score Distillation Sampling)
yt−ϵ∂θ∂x:就是我们说的**“指导信号”**,即评论家预测的噪声与实际噪声的差距。w(t):是一个权重函数,表示在不同噪声水平下,评论家的话有多重要。∂x/∂θ:是一个“责任分配”项。它通过链式法则,将“2D照片x需要做的修改”有效地传递回“3D模型参数θ应该如何修改”。
2025-07-17 16:29:40
714
原创 什么是DINO?
DINO是一个开创性的框架,它优雅地解决了“如何在没有标签的情况下让模型理解图像”这一难题。它最大的贡献是揭示了自监督学习能够让模型自发地理解物体的结构和边界。而DINOv2则是将 DINO 的理念进行工业级的大规模实践,通过海量数据和工程优化,最终打造出了一个即插即用、威力无比的视觉基础模型。
2025-07-08 20:43:26
763
原创 DINOv2
这个数据集通过自动化的流程从网络爬取的数据中筛选和整理而来,覆盖了广泛的视觉领域,为模型学习通用特征提供了坚实的基础。总而言之,DINOv2 是自监督学习领域的一个里程碑,它展示了通过大规模数据和巧妙的自我蒸馏方法,可以训练出媲美甚至超越传统监督学习方法的通用视觉模型,为计算机视觉的未来发展开辟了新的可能性。它所学到的视觉特征非常稳健,可以直接应用于多种下游视觉任务,例如图像分类、物体检测、图像分割甚至深度估计,而无需针对每个特定任务进行大量的模型微调。这一特性使得 DINOv2 成为一个强大的。
2025-07-08 20:22:47
577
原创 AI如何“举一反三”?一文读懂 One-Shot Learning 的核心奥秘
想象一下,你教一个孩子认识“长颈鹿”,你可能只需要指着动物园里的一只长颈鹿告诉他:“看,那是长颈鹿。” 从此以后,无论是在绘本上、电视里还是在另一家动物园,他都能立刻认出这种脖子长长的动物。One-Shot Learning(单样本学习),正是要赋予AI这种“举一反三”的能力。让模型在学习了大量相关知识后,对于一个全新的、从未见过的类别,仅通过一个样本就能成功识别出这个类别的其他成员。这与传统机器学习动辄需要成百上千个样本来训练一个类别的模式,形成了鲜明的对比。
2025-07-05 17:38:07
416
原创 什么是指令微调
特性传统微调指令微调目标在单一特定任务上表现出色遵循指令,泛化到多种任务训练数据单一任务的标注数据多种任务的“指令-输出”格式数据模型能力专才(例如,一个情感分析专家)通才(例如,一个能干的通用助手)泛化性弱,很难处理未经训练的任务强,能很好地处理未见过的新指令典型模型早期的 BERT 微调模型Flan-T5InstructGPT (ChatGPT 的前身)总而言之,指令微调是近年来大语言模型发展的一个关键突破。
2025-07-04 16:38:28
857
原创 什么是Flan-T5?
Flan-T5 的核心创新在于其独特的训练方法——“指令精调”(Instruction Finetuning),这使其在理解和执行自然语言指令方面表现出色,能够处理海量的自然语言处理(NLP)任务。T5(Text-to-Text Transfer Transformer)模型提出了一种革命性的思想:将所有的 NLP 任务都统一为一种“文本到文本”(Text-to-Text)的格式。它通过创新的“指令精调”技术,极大地提升了模型遵循人类指令和泛化到新任务的能力,使其成为一个既强大又灵活的工具。
2025-07-04 16:36:46
695
原创 PPO (Proximal Policy Optimization)
PPO,全称是Proximal Policy Optimization(近端策略优化),是由 OpenAI 在 2017 年提出的一种强化学习算法。自提出以来,它因其出色的稳定性、实现简单和高效的数据利用率,迅速成为解决许多强化学习问题的首选算法,尤其在机器人控制、游戏 AI 等连续动作空间任务中表现优异。可以把它理解为强化学习算法中的“瑞士军刀”——功能强大、可靠且易于使用。高稳定性 (High Stability):通过截断机制,有效避免了策略崩溃,使训练过程更加平滑。
2025-07-03 10:58:05
547
原创 什么是EMA(Exponential Moving Average)
这种“厚近薄远”的加权方式使EMA能够比简单地将所有数据同等看待的“简单移动平均”(Simple Moving Average, SMA)更快地响应最新的变化。你是更看重昨天的气温,还是更看重一个月前某一天的气温?显然是昨天的气温参考价值更大。EMA的计算是一个迭代或递推的过程。也就是说,计算今天的EMA需要用到昨天的EMA值。为了更好地理解EMA,我们先快速看一下它的“同胞兄弟”——简单移动平均(SMA)。计算一个加权平均值,权重随着数据点的“年龄”增长而呈指数级衰减。的计算与你选择的时间周期。
2025-07-01 16:13:18
561
原创 泛读论文《Sonata: Self-Supervised Learning of Reliable Point Representations》
这篇论文的出发点是解决现有3D自监督学习方法中的一个核心痛点。Sonata的模型设计更加灵活,能够提供多尺度的表示,为未来的3D研究提供了更自由的架构选择。总而言之,Sonata通过巧妙的设计克服了3D自监督学习中的一个根本性难题,为点云表示学习提供了一个强大、高效且通用的解决方案。为了实现上述目标,Sonata提出了几个关键的创新点,其核心思想是“强迫”模型去关注语义信息,而不是简单的几何线索。Sonata学习到的高质量点云表示使其在多个领域具有广泛的应用潜力,尤其是在数据有限或标注成本高昂的场景下。
2025-07-01 15:58:56
742
原创 GELU 一个更聪明的ReLU
GELU是一种改进的激活函数,相比ReLU的"硬开关"特性,GELU采用"软开关"机制。其核心公式是x·Φ(x),其中Φ(x)为标准正态分布的累积函数,根据输入x的重要性概率决定保留程度:大值基本保留,小值逐渐屏蔽。GELU具有平滑性、可导性、缓解神经元死亡问题等优势,在Transformer模型中表现优异,成为BERT、GPT等的主流激活函数。它通过概率化的自适应缩放机制,实现了比ReLU更智能的信息处理方式。
2025-07-01 09:38:18
826
原创 Diagonal State Spaces为什么减少参数量还是有用?
对角状态空间模型之所以有用,其成功的秘诀在于一种精妙的权衡牺牲:它放弃了状态转移矩阵A内部的稠密连接,牺牲了“一步到位”的结构复杂性。得到:它换来了线性计算复杂度和并行训练能力,这是处理长序列的根本。补偿:它通过以下方式补偿表达能力:HiPPO初始化:让简单的独立通道组合起来变得强大。后续层(FFN):在SSM层之外进行充分的跨通道信息融合。动态参数(Mamba):让简单的结构能根据输入内容灵活地改变其行为。因此,它并非“能力小”,而是把“能力”体现在了与传统稠密模型不同的、更高效的地方。
2025-07-01 09:36:54
1300
原创 Diagonal State Spaces
摘要 DDPM(去噪扩散概率模型)通过逐步添加高斯噪声(前向过程)和反向去噪(逆向过程)来生成图像。关键点在于训练U-Net网络预测噪声,实现图像生成。DDIM(去噪扩散隐式模型)是对DDPM的改进,通过引入参数η控制随机性:η=1时保持随机采样,η=0时实现确定性采样,显著提高生成速度。两种模型都基于扩散思想,但DDIM通过数学重构实现了更高效的生成路径,在保持质量的同时优化了计算效率。
2025-07-01 09:36:34
560
原创 DDPM 和 DDIM
摘要 DDPM(去噪扩散概率模型)通过逐步添加高斯噪声(前向过程)和反向去噪(逆向过程)来生成图像。关键点在于训练U-Net网络预测噪声,实现图像生成。DDIM(去噪扩散隐式模型)是对DDPM的改进,通过引入参数η控制随机性:η=1时保持随机采样,η=0时实现确定性采样,显著提高生成速度。两种模型都基于扩散思想,但DDIM通过数学重构实现了更高效的生成路径,在保持质量的同时优化了计算效率。
2025-06-30 20:46:21
904
原创 State Space Model 与 Mamba
状态空间模型(SSM)是一种描述动态系统的数学框架,通过状态方程和输出方程来预测系统行为。Mamba是基于SSM的深度学习架构,通过创新性的"选择性机制",让状态矩阵A、B、C成为输入相关的动态参数,使模型能够根据内容选择性地记忆或忽略信息。相比传统SSM和Transformer,Mamba在保持线性计算复杂度的同时,具备更强的动态推理能力,特别适合处理长序列任务。这种内容感知的特性使Mamba在性能和效率上都表现出色。
2025-06-30 20:45:23
1111
原创 Classifier Guidance 与 Classifier-Free Guidance
扩散模型引导技术主要分为有分类器引导(Classifier Guidance)和无分类器引导(Classifier-Free Guidance)两种。有分类器引导需要独立训练扩散模型和分类器,通过分类器梯度调节生成方向;无分类器引导仅需单一模型,通过特殊训练方式让模型同时掌握有条件和无条件生成能力,在推理时通过两者预测差异进行引导。后者因架构简洁、引导协调、能处理复杂语义而成为主流技术。两种方法在架构复杂度、引导来源、训练过程和灵活性方面存在显著差异。
2025-06-28 20:47:09
904
原创 使用 OpenCV 将 PNG 图片合并为视频:支持多个文件夹排序加载
首先,我们定义了一个该函数会筛选出.png格式且文件名不包含'train'字样的图片,并转换为 RGB 格式。接着,使用numbers = re.findall(r'\d+', base_name) # 提取所有数字该函数通过正则表达式提取文件名中的数字,并返回第一个数字,如果文件名中没有数字,则返回一个很大的值,确保文件名排序时没有数字的文件排在最后。通过以上步骤,我们成功实现了一个 Python 脚本,可以将多个文件夹中的 PNG 图片按数字顺序合并成一个视频。
2024-12-27 16:38:30
1089
原创 java 链式调用原理
首先来看这么一段代码:这串代码可以这样使用链式调用:最后打印的结果是:其实就是函数调用,的时候返回一个Chain类型数据,然后这个数据类型中是存在put方法的,所以第一次调用put是成功的,put方法中还存在一个,这个this指针指向当前类,也就是返回了一个类对象,所以还是可以调用put方法,来再多的都是可以调用的。
2022-11-20 10:50:54
1080
原创 minio集成到springboot中 报错 S3 API Request made to Console port Non-XML response from server
Non-XML response from server. Response code: 502, Content-Type: null, body: <Error> <Code>AccessDenied</Code> <Message>S3 API Request made to Console port. S3 Requests should be sent to API port.</Message> <Request
2022-04-27 21:05:04
6089
1
原创 checkbox动态绑定数据(无法绑定问题)报length错误
最近在使用vue开发考试系统时,前端遇到了这样一个问题。[Vue warn]: Error in render: "TypeError: Cannot read properties of undefined (reading 'length')"<!-- 把值绑定到存放id和答案对应的关系对象的一个属性--><el-radio-group v-model="studentAnswers[question.id]" > <!--循环遍历所有选项 -->
2022-03-21 16:09:00
3494
原创 upic上传GitHub图床失败解决
最近不知道怎么回事,使用Typora写笔记时,上传图片失败,没有返回链接,还是使用本地文件。进到GitHub中查看原因,发现文件已经上传成功,但是就是无法访问,通过Tyora上传的链接来访问,提示:Failed to fetch version info for XXX.复制GitHub中图片地址,访问发现没有问题,放到Typora也没有问题。发现和原网址是有区别的,发现使用了加速所以地址不对,不能使用cdn加速访问。之后域名使用https://github.com/github账户名/仓库名/
2021-12-14 13:46:16
1639
原创 二叉树树形输出以及一些简单的计算
大体思路采用到vector容器,使用它可以轻松的进行内容转置(行竖向输出)。采用中序排序的方法(这样子才能保证双亲在左、右孩子之间),对节点竖向的位置进行横向保存到vector容器中,这样就能保证每一行只有一个节点,不用考虑多个节点如何输出等麻烦问题。根据节点所在层数确定节点前面的空格数,根据二叉树的深度确定字符串长度(在字符串后补空格)。最后把保存在容器中的字符串转置输出(横向向转竖向)输出二叉树。下面代码只给出了计算深度(控制字符串长度需要用到),转置,输出二叉树的代码。//计算高度int D
2021-11-23 17:41:10
2036
原创 brew安装python报错tar: Error opening archive: Failed to open’***‘
查看报错原因,一开始以为是权限问题,不给写入,修改权限后发现还是无法安装。仔细查看,发现没有安装gdbm依赖。解决办法安装gdbm依赖,命令行输入brew install gdbm如下则表示安装成功!最后再次执行命令brew install [email protected]安装成功!...
2021-10-05 20:33:31
3819
原创 攻防世界 Web_php_include wp
<?phpshow_source(__FILE__);echo $_GET['hello'];$page=$_GET['page'];while (strstr($page, "php://")) { $page=str_replace("php://", "", $page);}include($page);?>首先看到一串PHP代码。strstr函数:查找字符串首次出现的位置。返回字符串剩余部分strstr($page, "php://")在page变量中查找p
2021-07-22 08:55:58
1642
1
原创 php_code_challenges练习challenge1~3
Challenge11wMDEyY2U2YTY0M2NgMTEyZDQyMjAzNWczYjZgMWI4NTt3YWxmY=<?phperror_reporting(0);require __DIR__.'/lib.php';echo base64_encode(hex2bin(strrev(bin2hex($flag)))), '<hr>';highlight_file(__FILE__);?>使用PHP反跑一下编码解密。challenge2<?ph
2021-07-21 15:01:24
365
1
原创 mac下打包python文件
1、下载py2app在终端中输入pip install py2app也可以在pycharm中下载。快捷键command+,打开设置页面,打开Preferences | Project: python | Python Interpreter点击左下角➕,搜索py2app下载。2、在自己喜欢的路径设立文件夹终端中输入cd 进入想要进入的路径(可以拖入文件夹)mkdir 文件名3、用cd进入刚才的文件例,我要打包的文件是dabao.py终端执行py2applet --make-s
2021-06-11 13:16:51
2471
4
原创 函数实现字符串逆序
#include <stdio.h>#define MAXS 20void f( char *p );int main(){ char s[MAXS]; gets(s); f(s); printf("%s\n", s); return 0;}void f( char *p ){ int i = 0, length = 0; for (i = 0; *(p + i) != '\0'; i++) { length++; ..
2021-05-04 09:53:52
323
原创 使用函数的选择排序
选择排序原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕#include <stdio.h>void sort (int a[],int n){ int i,j,min,t; for (i=0;i<n-1;i++)//控制循环次数n-1次 { min=i; for (j=i+1;j<n;j++
2021-05-03 19:50:30
2486
1
Auto-Rig Pro 是一款专为 Blender 设计的高级插件(Addon),旨在极大地简化和加速 3D 角色的绑定(Rigging)与动画制作流程 它提供了一套全面而强大的工具,无论是对于需要
2025-07-26
多图片转视频,支持多文件夹、多文件夹分别排序
2024-12-27
idea 的select classes to import idea快捷键
2022-06-14
vue打包路径问题,必须添加点号,vue打包默认是绝对路径,怎么打包成相对路径?
2022-06-04
两台服务器分别部署springboot +vue 出现跨域问题
2022-04-09
TA创建的收藏夹 TA关注的收藏夹
TA关注的人