130. 被围绕的区域(Java、Union-Find)

该博客介绍了如何运用并查集(Union-Find)算法解决一个特殊的二维字符数组问题。首先,将边界上的'O'与dummy节点连接,然后遍历内部'O',将其与相邻'O'连通。最后,找到与dummy不连通的'O'并替换为'X'。通过这个过程,实现了二维数组中特定条件下的'O'填充规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

另类的思路:并查集Union-Find
将边界上的‘O’与dummy连接,再对内部的‘O’进行上下左右查找连接
最后遍历查找所有与dummy不相连的元素‘O’,替换成‘X’
详情见注释

class Solution {
    //Union-Find的思路
    void solve(char[][] board) {
        if (board.length == 0) {
            return;
        }
        int m = board.length;
        int n = board[0].length;
        // 给 dummy 留一个额外位置
        UF uf = new UF(n*m+1);
        int dummy = n*m;
        // 将首列和末列的 O 与 dummy 连通
        for(int i = 0;i<m;i++){
            if(board[i][0] == 'O'){
                uf.union(i*n,dummy);
            }
            if(board[i][n-1] == 'O'){
                uf.union(i*n+n-1,dummy);
            }
        }
        // 将首行和末行的 O 与 dummy 连通
        for(int i = 0;i<n;i++){
            if(board[0][i] == 'O'){
                uf.union(i,dummy);
            }
            if(board[m-1][i] == 'O'){
                uf.union((m-1)*n+i,dummy);
            }
        }
        // 方向数组 d 是上下左右搜索的常用手法
        int[][] d = new int[][]{{1,0},{0,1},{0,-1},{-1,0}};
        for(int i = 1;i<m-1;i++){
            for(int j = 1;j<n-1;j++){
                if(board[i][j] == 'O'){
                    // 将此 O 与上下左右的 O 连通
                    for(int k = 0;k<4;k++){
                        int x = i + d[k][0];
                        int y = j + d[k][1];
                        if(board[x][y] == 'O'){
                            uf.union(i*n+j,x*n+y);
                        }
                    }
                }
            }
        }
        // 所有不和 dummy 连通的 O,都要被替换
        for(int i = 1;i<m;i++){
            for(int j = 1;j<n;j++){
                if(!uf.connection(i*n+j,dummy)){
                    board[i][j] = 'X';
                }
            }
        }
	}
}
class UF {
    // 连通分量个数
    private int count;
    // 存储每个节点的父节点
    private int[] parent;

    // n 为图中节点的个数
    public UF(int n) {
        this.count = n;
        parent = new int[n];
        for (int i = 0; i < n; i++) {
            parent[i] = i;
        }
    }
    
    // 将节点 p 和节点 q 连通
    public void union(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        
        if (rootP == rootQ)
            return;
        
        parent[rootQ] = rootP;
        // 两个连通分量合并成一个连通分量
        count--;
    }

    // 判断节点 p 和节点 q 是否连通
    public boolean connected(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        return rootP == rootQ;
    }
	//每次调用 find 函数向树根遍历的同时,顺手就将树高缩短了
    public int find(int x) {
        if (parent[x] != x) {
            parent[x] = find(parent[x]);
        }
        return parent[x];
    }

    // 返回图中的连通分量个数
    public int count() {
        return count;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值