另类的思路:并查集Union-Find
将边界上的‘O’与dummy连接,再对内部的‘O’进行上下左右查找连接
最后遍历查找所有与dummy不相连的元素‘O’,替换成‘X’
详情见注释
class Solution {
//Union-Find的思路
void solve(char[][] board) {
if (board.length == 0) {
return;
}
int m = board.length;
int n = board[0].length;
// 给 dummy 留一个额外位置
UF uf = new UF(n*m+1);
int dummy = n*m;
// 将首列和末列的 O 与 dummy 连通
for(int i = 0;i<m;i++){
if(board[i][0] == 'O'){
uf.union(i*n,dummy);
}
if(board[i][n-1] == 'O'){
uf.union(i*n+n-1,dummy);
}
}
// 将首行和末行的 O 与 dummy 连通
for(int i = 0;i<n;i++){
if(board[0][i] == 'O'){
uf.union(i,dummy);
}
if(board[m-1][i] == 'O'){
uf.union((m-1)*n+i,dummy);
}
}
// 方向数组 d 是上下左右搜索的常用手法
int[][] d = new int[][]{{1,0},{0,1},{0,-1},{-1,0}};
for(int i = 1;i<m-1;i++){
for(int j = 1;j<n-1;j++){
if(board[i][j] == 'O'){
// 将此 O 与上下左右的 O 连通
for(int k = 0;k<4;k++){
int x = i + d[k][0];
int y = j + d[k][1];
if(board[x][y] == 'O'){
uf.union(i*n+j,x*n+y);
}
}
}
}
}
// 所有不和 dummy 连通的 O,都要被替换
for(int i = 1;i<m;i++){
for(int j = 1;j<n;j++){
if(!uf.connection(i*n+j,dummy)){
board[i][j] = 'X';
}
}
}
}
}
class UF {
// 连通分量个数
private int count;
// 存储每个节点的父节点
private int[] parent;
// n 为图中节点的个数
public UF(int n) {
this.count = n;
parent = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
}
}
// 将节点 p 和节点 q 连通
public void union(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
if (rootP == rootQ)
return;
parent[rootQ] = rootP;
// 两个连通分量合并成一个连通分量
count--;
}
// 判断节点 p 和节点 q 是否连通
public boolean connected(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
return rootP == rootQ;
}
//每次调用 find 函数向树根遍历的同时,顺手就将树高缩短了
public int find(int x) {
if (parent[x] != x) {
parent[x] = find(parent[x]);
}
return parent[x];
}
// 返回图中的连通分量个数
public int count() {
return count;
}
}