一、 二叉平衡树
概念
二叉搜索树有称 二叉排序树,它也可以是一个空树。
- 如果它的左子树不为空,则左子树上所有结点的值都小于根结点的值
- 如果他的右子树不为空,则右子树上所有结点的值都大于根结点的值
- 它的左右子树也分别是二叉搜索树
由图可以看出:二叉搜索树中最左侧的节点是树中最小的节点,最右侧节点一定是树中最大的节点
采用中序遍历遍历二叉搜索树,可以得到一个有序的序列:
1 3 4 5 6 7 8 9 10
二叉搜索树的查找
若根结点不为空:
如果根结点的值==target值 返回true
如果根结点的值 > target值 在其左子树查找
如果根结点的值 < target值 在其右子树查找
否则 返回false
二叉树查询效率【性能分析】
最优情况:二叉搜索树为完全二叉树,其平均比较次数
最差情况:二叉搜索树退化成单支树,其平均比较次数
二、 AVL树【高度平衡的二叉搜索树】
概念
二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。
当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过
1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
下面说一下二叉搜索树的特点:
- 它的左子树右子树都是AVL树。
- 左右子树高度之差的绝对值不超过 1
如果一颗二叉搜索树是高度平衡的,他就是AVL树。它有n个结点,其高度可保持在 O(log2N),搜索时间复杂度O( log2N)。
AVL树结点的定义
为了AVL树实现简单,AVL树节点在定义时维护一个平衡因子,具体节点定义如下:
static class TreeNode {
public int val;
public int bf; //平衡因子
public TreeNode left;
public TreeNode right;
public TreeNode parent;
public TreeNode(int val) {
this.val = val;
}
}
AVL树的插入
public TreeNode root;
public boolean insert(int val) {
TreeNode node = new TreeNode(val);
if (root == null) {
root = node;
return true;
}
TreeNode parent = null;
TreeNode cur = root