Windows10、anaconda3、python3.9、国内清华镜像源安装gpu版本pytorch


活动地址:CSDN21天学习挑战赛

1.gpu相关

2.pytorch

  • 本来的cuda是11.2,但并没有与之对应的pytorch版本,选择下载cuda11.3对应的版本,网上的资料都说没有发现问题
  • 官网,参考官网得到下载的命令:conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

3.换源

  • 国内清华镜像源地址,在里面找自己电脑的系统,将下面的地址做出响应的修改
  • conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/

4.验证

(base) PS C:\Users\53423> python
Python 3.9.12 (main, Apr  4 2022, 05:22:27) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
True
>>>

5.常见错误

  • 清华源常常会下载cpu版本而不是gpu版本
  • 解决办法:指定具体版本(参考清华源中都有什么版本)
  • 例如:
pip install pytorch==1.9.1-py3.7_cuda10.2_cudnn7_0 torchvision torchaudio cudatoolkit==10.2 -f https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
  • 或者在清华源手动下载,离线安装,参考这里,效果如下:

在这里插入图片描述

<think>好的,我现在需要帮助用户在服务器上通过Anaconda安装GPU版本PyTorch。首先,我得回忆一下相关的步骤,确保每一步都正确。用户可能已经有一定的conda使用经验,但可能需要详细的指导。 首先,我应该确认服务器的CUDA版本,因为PyTorch需要和CUDA版本匹配。用户提到他们可能不知道CUDA 11.7支持的PyTorch版本,这可能是个问题。所以第一步是指导用户如何检查CUDA版本。通常可以通过运行`nvidia-smi`命令来查看,这个命令会显示CUDA的版本号,比如11.7。如果用户没有安装CUDA,可能需要先安装合适的版本,或者使用conda安装cudatoolkit。不过,通常服务器上已经预装了CUDA,所以检查版本是关键。 接下来,创建conda环境。用户可能需要一个独立的环境来管理PyTorch,避免与其他项目的依赖冲突。命令应该是`conda create --name pytorch_gpu python=3.x`,这里需要指定Python版本,比如3.8或3.9,根据PyTorch的支持情况。然后激活环境`conda activate pytorch_gpu`。 然后,安装PyTorch。用户需要访问PyTorch官网查看正确的安装命令。官网会根据选择的CUDA版本提供对应的conda命令。例如,CUDA 11.7对应的可能是`conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia`。这里要确保用户使用正确的渠道(-c pytorch -c nvidia)和版本号。 安装完成后,验证是否成功。用户需要进入Python环境,导入torch,检查`torch.cuda.is_available()`是否为True。如果返回False,可能需要检查CUDA与PyTorch版本的兼容性,或者驱动是否正确安装。此外,还可以通过`torch.zeros(1).cuda()`来测试是否有错误。 另外,用户可能遇到依赖问题或者网络问题导致安装失败,这时候可能需要更换conda源或者使用pip安装。不过conda通常能处理依赖问题,所以优先推荐conda安装。如果服务器无法访问默认的conda源,可能需要配置镜像源,比如清华源或者中科大源。 还要注意,用户可能混淆了CUDA版本PyTorch所需的cudatoolkit版本。例如,PyTorch可能自带cudatoolkit,这时候不需要单独安装,但需要确认是否与系统的CUDA驱动兼容。一般来说,PyTorch的conda包会处理这些依赖,所以用户只需确保CUDA驱动版本足够高即可。 最后,提醒用户如果安装过程中出现错误,可以尝试指定PyTorch版本号,或者查看官方文档的兼容性表格。同时,建议用户创建环境时记录所有安装的包,方便后续管理和复现。</think>以下是使用Anaconda在服务器上安装GPUPyTorch的分步指南: ### 一、验证CUDA驱动 1. 执行命令查看CUDA版本: ```bash nvidia-smi ``` 输出右上角显示`CUDA Version: 11.7`表示当前驱动支持的CUDA版本[^2] ### 二、创建conda环境 ```bash conda create -n pytorch_env python=3.9 conda activate pytorch_env ``` ### 三、安装PyTorch GPU版 根据CUDA 11.7选择安装命令: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia ``` ### 四、验证安装 ```python import torch print(torch.__version__) # 应显示2.x.x+cu117 print(torch.cuda.is_available()) # 应返回True ``` ### 五、注意事项 1. 如果服务器无法连接默认源,可添加清华镜像源: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ ``` 2. CUDA驱动版本需≥PyTorch要求的版本(通过`nvidia-smi`查看驱动版本
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿航626

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值