注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】
清华《GPT多模态大模型与AI Agent智能体》书籍配套视频课程【陈敬雷】
GPT多模态大模型与AI Agent智能体系列七十八
30分钟上手!Dify开源平台:比LangChain更简单,小白也能搞定AI Agent全流程开发
一、Dify.AI平台概述:开源LLM应用开发的“降维工具”
Dify是一款开源的大语言模型(LLM)应用开发平台,核心定位是“让AI应用开发更简单”,其最突出的优势是比LangChain更易用,无需复杂的代码基础即可快速构建从Agent智能体到AI工作流、RAG检索、模型管理等功能的AI应用。
作为覆盖生成式AI原生应用全技术栈的工具,Dify封装了LLM推理、多模型集成、可视化编排等核心能力,让开发者无需关注底层技术细节,聚焦于应用的核心价值创造。截至2024年,其已支持10+商业模型、7家MaaS厂商(如Hugging Face、AWS Bedrock)及6种本地模型推理运行时(如Ollama、NVIDIA TIS),并能在48小时内接入主流新模型,灵活性与扩展性极强。
二、核心特点与优势:数据安全+开发高效+功能全面
Dify的竞争力体现在六大核心优势:
- 安全可靠:采用PKCS1_OAEP加密技术存储API密钥,租户独立密钥对保障数据安全,避免泄露风险。
- 开发高效:提供可视化Prompt开发界面、多模型一键切换、推理观测与日志记录功能,简化AI研发流程,新手可快速上手。
- 模型灵活:支持多类型模型(系统推理、Embedding、Rerank、语音转文字),兼容OpenAI、Anthropic等自有模型及Hugging Face等托管模型,可按需选择。
- 自动化能力:支持定制化Agent智能体,能实现任务分解、工具调用、流程迭代的自动化处理,降低对人工干预的依赖。
- 工作流强大:可视化编排界面支持复杂逻辑设计,涵盖条件判断、代码执行、HTTP请求等节点,提升复杂任务的处理效率。
- RAG优化:行业首个可视化知识库管理界面,支持多索引方法(关键词、文本向量、LLM辅助模型)与检索优化(重排序模型),提升知识问答准确性。
三、基本功能组成:从模型到应用的全链路支持
Dify的功能体系可分为五大模块:
- LLM推理引擎:自v0.4版本移除LangChain,采用自研的Dify Runtime,支持流式输出与多模态能力(ASR语音转文字、富文本处理)。
- 应用构建工具:提供Prompt-as-a-Service编排、代理工作流特性(模块化DSL、原生代码运行时)、40+内置工具(如OpenAPI规范API调用)。
- 知识库管理:支持TXT、PDF、DOC等多格式文件ETL处理,可同步Notion文档、网页作为知识源,兼容Qdrant、Milvus等10+向量数据库。
- 团队协作:通过工作区与多成员管理功能,支持多人协同开发与应用迭代。
- 部署与集成:支持Docker、Helm部署,提供RESTful API规范,方便与后端、前端应用集成,且自带开箱即用的WebApp界面。
四、应用类型:5种场景全覆盖,满足从对话到自动化需求
Dify提供5种应用类型,覆盖不同业务场景:
- 聊天助手:多轮对话式交互,支持上下文持续保存,适用于客服、智能问答等场景,提供对话开场白与下一步问题建议功能。
- 文本生成应用:一问一答模式,聚焦单轮文本生成(如翻译、分类、摘要),无上下文记忆,输出结果直接可用。
- Agent智能助手:具备任务分解、推理思考、工具调用能力,支持Function calling与ReAct推理模式,适用于财务分析、旅程规划等复杂任务。
- 对话流(Chatflow):支持流程控制+多轮对话,内置聊天记忆(Memory),适用于客户服务、语义搜索等需要动态调整的场景,可通过Answer节点流式输出中间结果。
- 工作流(Workflow):面向自动化、批处理场景(如邮件自动化、数据分析),单轮生成结果,无多轮交互,通过End节点结束流程。
五种应用类型在交互方式、上下文管理、功能支持上存在显著差异,开发者可根据场景需求选择(如需要多轮对话选Chatflow,批量处理选Workflow)。
五、模型接入:多类型+多供应商,灵活适配业务需求
Dify的模型接入体系需先在“设置-模型供应商”页面配置,核心分为四步:
- 模型分类:按场景分为系统推理模型(应用创建、对话生成)、Embedding模型(知识库嵌入)、Rerank模型(搜索结果优化)、语音转文字模型(ASR)。
- 供应商类型:包括自有模型(如OpenAI、Anthropic)与托管模型(如Hugging Face),前者通过API Key直接接入,后者需按供应商要求配置。
- 安全保障:所有API密钥采用加密存储,租户独立管理,避免权限泄露。
- 默认设置:可指定系统默认推理模型,用于应用创建、下一步问题建议等功能,确保开发一致性。
支持的模型涵盖GPT-4o、Claude 3.5、Qwen2等主流大模型,且兼容本地部署模型(如通过Ollama接入Qwen2-7B),满足不同算力与成本需求。
六、工作流构建:可视化编排,复杂任务“拆分为易”
工作流是Dify处理复杂任务的核心功能,通过将任务拆解为节点与变量,降低对提示词技术和模型推理能力的依赖,提升系统稳定性。
-
核心概念:
- 节点:工作流的基本单元,包括LLM、知识检索、IF/ELSE、代码、HTTP请求等类型,支持串联执行。
- 变量:分系统变量(如sys.query用户输入)、环境变量、会话变量,用于节点间数据传递。
-
两种工作流类型:
- Chatflow:面向对话场景,支持记忆功能与多轮交互,含Answer节点用于中间输出,适用于客服、语义搜索。
- Workflow:面向自动化场景,无记忆功能,通过End节点结束,适用于翻译、数据分析等批处理任务。
-
构建步骤:
- 创建工作流应用,定义输入参数(如标题提示、内容要求)。
- 添加节点(如LLM生成标题、模板转换合并结果),配置节点逻辑(如LLM的System提示词、变量映射)。
- 运行测试,输入参数验证流程有效性,调试优化节点顺序与参数。
示例:通过“LLM生成标题→LLM生成正文→模板转换合并”节点链,可快速构建“文章自动生成”工作流,全程可视化操作,无需代码。
七、知识库使用:从创建到应用,3步实现“AI+专属知识”
知识库是Dify提升AI回答准确性的关键,适用于企业客服、内部培训等需要结合私有数据的场景,使用流程如下:
- 准备数据:支持TXT、Markdown、PDF等格式,推荐QA模式(如“### 问题?回答内容”),便于模型精准匹配。
- 创建知识库:上传文件后选择索引方式(经济模式免费,高质量模式需付费模型支持),设置检索参数(如返回结果数量),系统自动处理数据并生成索引。
- 应用关联:在聊天助手、Agent等应用中关联知识库,AI回答时会优先检索知识库内容并引用来源,提升回答的专业性与准确性。
示例:上传“客服知识问答语料库.md”后,关联至聊天助手,用户询问“如何与Google Calendar同步”时,AI会直接引用语料库内容,确保回答一致性。
八、本地部署与模型集成:私有化部署,适配本地化需求
Dify支持本地部署,适合对数据隐私要求高的场景,步骤如下:
- 环境准备:安装Docker与Docker-compose,确保服务器满足算力需求(如集成Qwen2-7B需8C16G配置)。
- 部署流程:克隆源码→配置环境变量→启动容器,通过docker-compose up -d命令一键部署,默认端口80可直接访问。
- 模型集成:在“模型供应商”中添加本地模型(如Ollama运行的Qwen2-7B),配置模型名称与基础URL(如http://ip:11434),即可在应用中调用本地模型。
本地部署可实现模型私有化运行,避免数据外泄,同时支持结合本地知识库,打造全链路私有化的AI应用。
九、官方工作流案例解析:14个场景,覆盖主流业务需求
Dify提供14个官方工作流案例,涵盖内容生成、数据分析、自动化等场景,典型案例包括:
- SEO博客文章生成器:通过“标题生成→大纲生成→正文撰写”节点链,自动生成符合SEO规范的博客文章。
- 用户评论分析工作流:调用LLM节点分析评论情感,通过分类节点区分正面/负面评价,输出结构化分析报告。
- 邮件自动回复工作流:解析邮件内容→匹配知识库→生成回复,实现客服邮件自动化处理。
- 知识检索聊天机器人:结合知识库与LLM,优先检索私有数据,适用于企业内部问答系统。
这些案例可直接复用或二次修改,降低开发门槛,快速适配实际业务。
十、用户评价与生态:易用性获认可,开源生态持续扩展
从用户反馈来看,Dify的核心优势“易用性”获得广泛认可,尤其被称赞“可视化界面降低了AI Agent开发门槛”。同时,其开源特性吸引了大量开发者参与生态建设,衍生出如Qinagent等增强型平台,支持多智能体管理与第三方应用(钉钉、企业微信)接入。
不过,也存在“高并发下性能波动”的反馈,说明在企业级大规模应用中仍需优化。总体而言,Dify凭借“简单、开源、灵活”的特点,已成为中小团队与个人开发者构建AI应用的首选工具。
总结:Dify的核心价值与适用场景
Dify通过“可视化编排+多模型支持+全流程工具链”,降低了AI Agent与LLM应用的开发门槛,其核心价值在于:让不懂复杂代码的开发者也能快速构建从对话助手到自动化工作流的AI应用。
无论是企业客服、内容生成等标准化场景,还是财务分析、旅程规划等复杂任务,Dify都能通过灵活的应用类型与工作流编排满足需求。对于追求开发效率、需要私有化部署或结合私有知识的团队而言,Dify无疑是性价比极高的选择——正如其定位:“聚焦应用核心价值,让AI开发更简单”。
更多技术内容
更多技术内容可参见
清华《GPT多模态大模型与AI Agent智能体》书籍配套视频【陈敬雷】。
更多的技术交流和探讨也欢迎加我个人微信chenjinglei66。
总结
此文章有对应的配套新书教材和视频:
【配套新书教材】
《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】
新书特色:《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)是一本2025年清华大学出版社出版的图书,作者是陈敬雷,本书深入探讨了GPT多模态大模型与AI Agent智能体的技术原理及其在企业中的应用落地。
全书共8章,从大模型技术原理切入,逐步深入大模型训练及微调,还介绍了众多国内外主流大模型。LangChain技术、RAG检索增强生成、多模态大模型等均有深入讲解。对AI Agent智能体,从定义、原理到主流框架也都进行了深入讲解。在企业应用落地方面,本书提供了丰富的案例分析,如基于大模型的对话式推荐系统、多模态搜索、NL2SQL数据即席查询、智能客服对话机器人、多模态数字人,以及多模态具身智能等。这些案例不仅展示了大模型技术的实际应用,也为读者提供了宝贵的实践经验。
本书适合对大模型、多模态技术及AI Agent感兴趣的读者阅读,也特别适合作为高等院校本科生和研究生的教材或参考书。书中内容丰富、系统,既有理论知识的深入讲解,也有大量的实践案例和代码示例,能够帮助学生在掌握理论知识的同时,培养实际操作能力和解决问题的能力。通过阅读本书,读者将能够更好地理解大模型技术的前沿发展,并将其应用于实际工作中,推动人工智能技术的进步和创新。
【配套视频】
清华《GPT多模态大模型与AI Agent智能体》书籍配套视频【陈敬雷】
视频特色: 前沿技术深度解析,把握行业脉搏
实战驱动,掌握大模型开发全流程
智能涌现与 AGI 前瞻,抢占技术高地
上一篇:《GPT多模态大模型与AI Agent智能体》系列一》大模型技术原理 - 大模型技术的起源、思想
下一篇:DeepSeek大模型技术系列五》DeepSeek大模型基础设施全解析:支撑万亿参数模型的幕后英雄