揭秘ChatGPT Agent:从架构到场景,OpenAI如何用“双浏览器+虚拟电脑“重构AI执行逻辑?

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】

GPT多模态大模型与AI Agent智能体书籍本章配套视频课程【陈敬雷】

GPT多模态大模型与AI Agent智能体系列三十

揭秘ChatGPT Agent:从架构到场景,OpenAI如何用"双浏览器+虚拟电脑"重构AI执行逻辑?

2025年7月17日,OpenAI发布的ChatGPT Agent并非简单功能升级,而是AI从"对话助手"向"行动助手"的标志性跨越。它通过整合Operator网页操作、Deep Research信息分析与ChatGPT本体能力,构建出能自主规划、执行复杂任务的智能体系统,彻底改变了人机协作模式。

核心能力:从"被动应答"到"主动执行"

与传统ChatGPT相比,Agent实现了三大突破:

  • 交互方式:从问答对话升级为任务执行,用户只需描述目标(如"准备客户会议并生成PPT"),系统即可全程自主操作。
  • 工作模式:变被动响应为主动行动,能自主判断所需工具(浏览器、终端、API等),规划步骤并推进。
  • 能力边界:突破文本生成局限,覆盖网页操作、文件处理、跨应用协作等多场景,例如自动查询婚礼场地天气、筛选酒店、推荐穿搭并同步更新行程。

其"可视化执行"特性尤为关键:操作步骤实时可见,用户可随时中断、修改指令或手动接管,平衡了自主性与可控性。

技术架构:双浏览器+虚拟环境的精妙设计

ChatGPT Agent的架构核心是"统一智能体系统",两大创新设计支撑其强大能力:

  • 双浏览器机制:文本浏览器专攻结构化数据提取与API调用,适合高效信息分析;可视化浏览器模拟人类操作,处理GUI界面、表单填写等复杂交互,如同为AI配备"左右手"。
  • 虚拟计算机环境:提供隔离的操作空间,支持导航网站、运行代码、处理文件,让AI真正具备"动手能力"。例如生成PPT时,通过代码直接创建文档而非模拟点击,既提升效率又降低资源消耗。

此外,系统整合了多应用集成能力,可连接Gmail、GitHub、Google Drive等第三方服务,深度嵌入用户工作流,实现跨平台数据互通与操作联动。

应用场景:覆盖办公、生活与研究全领域

在实际场景中,ChatGPT Agent展现出强大落地能力:

  • 商务办公:自动完成竞争分析(访问官网、提取产品信息、生成对比PPT)、财务建模(调用数据接口、运行分析代码、输出成本结构表)等任务,在投行基准测试中表现超人类水平。
  • 日常生活:规划婚礼筹备(查天气、订酒店、选穿搭)、采购食材(比价、加购、生成清单),支持临时插入需求(如中途添加"买9.5码正装鞋")。
  • 研究分析:跨源搜集信息、交叉验证数据、生成结构化报告,在Humanity’s Last Exam测试中以44.4分刷新纪录,BrowseComp信息查找准确率达68.9%。

限制与未来:安全边界与行业影响

当前版本存在明确限制:Pro用户每月400次调用额度,其他付费用户40次;高风险操作(如金融交易)需用户手动完成;PPT生成暂不支持二次修改。但这并未阻碍其对行业的冲击——它重新定义了AI Agent的性能标准,迫使竞品重新审视产品路径。

未来,随着Agent间协作能力增强、跨平台协议标准化,其可能成为每个人的"数字分身",重塑工作模式与商业生态。正如OpenAI CEO奥特曼所言,看着它"思考、计划和执行"的瞬间,正是触摸AGI的真实体验。

更多技术内容

更多技术内容可参见
《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】书籍。
更多的技术交流和探讨也欢迎加我个人微信chenjinglei66。

总结

此文章有对应的配套新书教材和视频:

【配套新书教材】
《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】
新书特色:《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)是一本2025年清华大学出版社出版的图书,作者是陈敬雷,本书深入探讨了GPT多模态大模型与AI Agent智能体的技术原理及其在企业中的应用落地。
全书共8章,从大模型技术原理切入,逐步深入大模型训练及微调,还介绍了众多国内外主流大模型。LangChain技术、RAG检索增强生成、多模态大模型等均有深入讲解。对AI Agent智能体,从定义、原理到主流框架也都进行了深入讲解。在企业应用落地方面,本书提供了丰富的案例分析,如基于大模型的对话式推荐系统、多模态搜索、NL2SQL数据即席查询、智能客服对话机器人、多模态数字人,以及多模态具身智能等。这些案例不仅展示了大模型技术的实际应用,也为读者提供了宝贵的实践经验。
本书适合对大模型、多模态技术及AI Agent感兴趣的读者阅读,也特别适合作为高等院校本科生和研究生的教材或参考书。书中内容丰富、系统,既有理论知识的深入讲解,也有大量的实践案例和代码示例,能够帮助学生在掌握理论知识的同时,培养实际操作能力和解决问题的能力。通过阅读本书,读者将能够更好地理解大模型技术的前沿发展,并将其应用于实际工作中,推动人工智能技术的进步和创新。

【配套视频】

GPT多模态大模型与AI Agent智能体书籍本章配套视频 - 第1章 大模型技术原理【陈敬雷】
视频特色: 前沿技术深度解析,把握行业脉搏
揭秘 DeepSeek、Sora、GPT-4 等多模态大模型的技术底层逻辑,详解 Transformer 架构如何突破传统神经网络局限,实现长距离依赖捕捉与跨模态信息融合。
对比编码预训练(BERT)、解码预训练(GPT 系列)及编解码架构(BART、T5)的技术差异,掌握大模型从 “理解” 到 “生成” 的核心逻辑。
实战驱动,掌握大模型开发全流程
提示学习与指令微调:通过 Zero-shot、Few-shot 等案例,演示如何用提示词激活大模型潜能,结合 LoRA 轻量化微调技术,实现广告生成、文本摘要等场景落地(附 ChatGLM3-6B 微调实战代码)。
人类反馈强化学习(RLHF):拆解 PPO 算法原理,通过智谱 AI 等案例,掌握如何用人类偏好优化模型输出,提升对话系统的安全性与实用性。
智能涌现与 AGI 前瞻,抢占技术高地
解析大模型 “智能涌现” 现象(如上下文学习、思维链推理),理解为何参数规模突破阈值后,模型能实现从 “量变” 到 “质变” 的能力跃升。
前瞻通用人工智能(AGI)发展趋势,探讨多模态模型(如 Sora)如何推动 AI 从 “单一任务” 向 “类人智能” 进化,提前布局未来技术赛道。

上一篇:《GPT多模态大模型与AI Agent智能体》系列一》大模型技术原理 - 大模型技术的起源、思想
下一篇:DeepSeek大模型技术系列五》DeepSeek大模型基础设施全解析:支撑万亿参数模型的幕后英雄

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈敬雷-充电了么-CEO兼CTO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值