- 博客(102)
- 收藏
- 关注
原创 突破算力极限!订阅《YOLOv5极致优化实战》专栏,解锁低算力设备实时推理黑科技
《YOLOv5极致优化实战》专栏破解边缘计算部署难题,在4核消费级CPU上实现182.4FPS突破。通过剪枝、量化感知、稀疏化等核心技术,模型体积缩减75%的同时保持mAP损失<3%。专栏提供完整代码和工业级解决方案,包含树莓派4B适配、ONNX导出避坑等独家内容,实测某安防企业部署成本降低90%至9200元/年。适用于需在老旧x86/ARM设备部署的开发者,现订阅即获工程代码库、部署套件等资源,开启CPU性能革命。
2025-07-23 14:25:34
416
原创 YOLOv5模型压缩进阶技巧与实用经验
本文系统总结了YOLOv5模型压缩的进阶技巧与实战经验。重点介绍了剪枝+量化联合优化方案,包括recipe设计、实操命令和典型实验结果分析;探讨了迁移学习与模型压缩的结合实践;详细讲解了多模型部署与性能调优方法,包括ONNX导出、REST API部署等;提供了实验结果可视化分析与常见问题排查技巧。文章强调采用联合recipe、迁移学习结合压缩、批量自动化部署等实用策略,并推荐使用notebook、Wandb等工具进行实验记录与对比,为YOLOv5模型优化提供了全面的工程实践指导。
2025-07-23 14:13:46
298
原创 YOLOv5 DeepSparse高效推理与性能测试实战教程
本教程详细讲解如何使用DeepSparse引擎高效推理YOLOv5模型,涵盖annotate.py和benchmark.py两个核心脚本的实操应用。内容包含DeepSparse推理原理、参数配置详解、性能测试方法、加速优化技巧以及常见问题排查。教程特别针对剪枝/量化模型优化,提供多后端对比、批量推理、可视化分析等实用功能,帮助开发者实现CPU环境下的高效目标检测。附有详细命令示例、参数说明和结果分析方法,适合已掌握YOLOv5训练的开发者进阶优化推理性能。
2025-07-23 14:04:37
138
原创 YOLOv5模型导出与ONNX转换实战教程
摘要:本文详细讲解YOLOv5模型导出与ONNX转换实战方法,包括导出原理、命令参数解析、源码解读、推理加速、REST API部署等核心内容。重点介绍了ONNX导出命令、动态shape处理、剪枝/量化模型导出技巧,以及使用DeepSparse/ONNX Runtime进行高效推理的实现步骤。文章还提供了常见问题排查指南和实用优化技巧,帮助开发者快速掌握YOLOv5模型转换与部署的关键技术,适用于多种推理引擎和硬件平台。
2025-07-23 13:49:24
291
原创 YOLOv5激活函数替换与模型变体实验实战教程
激活函数是深度神经网络中非线性建模的关键组件。ReLU:简单高效,广泛应用于各类网络。:表现优于ReLU,YOLOv5默认激活函数。Hardswish:近似Swish但计算更高效,适合移动端和稀疏推理。等:新型激活函数,部分场景下有更优表现。不同激活函数对模型的收敛速度、最终精度、推理效率均有影响。
2025-07-23 13:43:17
337
原创 YOLOv5模型量化训练实战教程
本文详细介绍了YOLOv5模型量化训练实战方法,重点讲解如何利用SparseML进行量化感知训练(QAT)。内容包括量化原理、SparseML量化机制与recipe参数配置、量化训练命令实操、源码解读、模型评估与推理加速技巧,以及常见问题排查。教程提供了纯量化和剪枝+量化联合两种训练方案,通过YAML文件定义量化策略,并给出具体训练命令示例。同时介绍了量化后模型的导出与DeepSparse推理优化方法,最后总结了精度下降等常见问题的解决方案。
2025-07-23 13:39:41
388
原创 YOLOv5模型剪枝实战教程
《YOLOv5模型剪枝实战指南》系统介绍了基于SparseML的YOLOv5剪枝技术。文章首先阐述剪枝原理,区分非结构化与结构化剪枝方法;重点解析SparseML的recipe文件配置,包括学习率调度、稀疏率参数设置和分层剪枝策略;详细说明训练命令参数和源码集成逻辑;提供效果评估方法及常见问题解决方案;最后指出进阶方向包括结合量化和迁移学习。本教程注重实操性,配套项目文件可直接运行,帮助开发者快速掌握YOLOv5模型压缩技巧。
2025-07-23 13:33:07
524
原创 格灵深瞳视觉算法面试30问全景精解
摘要 本文系统梳理了格灵深瞳(GREATVISION)视觉算法岗位面试的核心考点,精选30个典型问题,涵盖视频分析、异常检测、智能交通、行人重识别等关键领域。内容聚焦计算机视觉算法在安防、零售、交通等场景的实际应用,包括多目标跟踪、异常行为检测、车流量统计、行人重识别、视频目标检测、客流分析、模型压缩、遮挡处理、车牌识别等核心技术。每个问题均提供算法原理说明、数学公式表达、Python代码实现及工程应用分析,重点考察候选人在复杂场景下的算法创新能力和工程落地经验。通过结构化的问题解析,帮助面试者全面掌握视觉
2025-07-23 00:19:39
688
原创 商汤科技视觉算法面试30问全景精解
本文系统梳理了商汤科技视觉算法面试的30个核心问题,涵盖多任务感知、人脸识别、目标检测、行为识别、模型压缩等关键技术领域。内容聚焦计算机视觉在智慧城市、安防监控等产业场景的应用,深入解析了FPN、3D卷积、对比学习等前沿算法的原理与实现。每个问题均提供理论公式说明、代码示例(如ArcFace、多任务网络等)及商汤实际应用场景,帮助面试者掌握视觉算法在产业落地的关键能力。特别强调多尺度建模、表征学习和轻量化部署等商汤重点考察方向,为AI视觉算法岗位求职提供全面指导。
2025-07-23 00:09:23
442
原创 旷视科技视觉算法面试30问全景精解
本文精选旷视科技视觉算法岗位面试中的30个核心问题,系统梳理了计算机视觉领域的关键技术与工程实践。内容涵盖人脸识别、目标检测、图像分割、行为识别等方向,重点解析了多任务网络设计、对比学习、特征检索、模型压缩等前沿技术。文章通过数学公式、代码示例和工程应用三方面深入讲解每个问题,包括ArcFace损失函数、FPN特征融合、3D卷积时序建模等核心技术原理及其在智能安防、工业检测等场景的实际应用。为视觉算法工程师提供了从理论到实践的全面面试指导,特别适合应聘旷视科技等AI企业的技术岗位候选人参考学习。
2025-07-23 00:06:36
719
原创 得物视觉算法面试30问全景精解
摘要: 本文系统解析得物视觉算法面试核心考点,聚焦商品图像理解、鉴别防伪两大技术方向。精选多任务网络设计、对比学习、图像检索、多尺度检测、分割算法、小样本学习、自监督学习、模型轻量化、时序建模等9大典型问题,提供技术原理、数学表达、代码实现与工程应用的完整解答方案。内容涵盖从基础理论到业务落地的全链路能力要求,特别强调得物在商品鉴别、瑕疵检测、特征检索等特色场景的创新实践,为求职者提供全面的技术准备框架。
2025-07-23 00:04:20
821
原创 大疆视觉算法面试30问全景精解
本文系统梳理了大疆视觉算法面试的30个核心问题,涵盖多任务感知网络设计、端到端自主飞行系统、视觉SLAM、目标检测跟踪、模型轻量化、时序建模、点云处理和多传感器融合等关键技术。针对每个问题,提供了算法原理、数学公式、代码实现和工程应用解析,如多任务网络损失函数设计、端到端一体化网络架构、ORB-SLAM特征提取、目标跟踪的检测-ReID融合、深度可分离卷积优化等。通过这些典型问题,全面展现了大疆在无人机视觉算法领域的技术重点和工程实践要求,为相关岗位求职者提供系统的面试准备框架。
2025-07-23 00:01:41
640
原创 蔚来汽车视觉算法面试30问全景精解
蔚来汽车视觉算法面试核心要点摘要 本文系统梳理了蔚来汽车视觉算法岗位面试的8大核心考点,涵盖多任务感知网络设计、端到端一体化系统、视觉SLAM定位、车道线检测、多尺度特征融合、模型轻量化、时序建模、点云处理等关键技术方向。每个问题从原理公式、代码实现到工程应用三个维度展开,突出自动驾驶场景下的算法创新与落地能力。内容聚焦智能电动汽车特有的视觉算法挑战,如多传感器融合、实时性保障、安全冗余设计等,为应聘者提供从理论到实践的全面指导,帮助把握蔚来对算法工程化能力的高标准要求。
2025-07-22 23:59:04
669
原创 小鹏汽车视觉算法面试30问全景精解
本文系统梳理了小鹏汽车视觉算法面试的30个核心问题,涵盖自动驾驶感知、视觉算法创新和工程落地三大方向。重点解析了多任务感知网络、端到端一体化系统、视觉SLAM、车道线检测、多尺度特征融合等关键技术,涉及深度学习模型设计、3D重建、时序建模和点云处理等前沿领域。每个问题从考察点、技术原理、代码实现到工程应用四个维度展开,突出了小鹏汽车对算法创新与产业落地的双重重视。文章为智能驾驶领域的算法工程师提供了全面的面试准备指南,特别强调算法在自动驾驶场景下的鲁棒性优化和系统集成能力,体现了小鹏汽车"AI驱动
2025-07-22 23:53:03
629
原创 哔哩哔哩视觉算法面试30问全景精解
本文系统梳理了B站视觉算法面试的核心考点,涵盖7大技术方向:1)弹幕OCR与内容审核技术,详解EAST+CRNN+CTC的完整解决方案;2)视频多标签分类与标签生成,重点分析多标签损失函数设计;3)智能推荐中的多模态融合技术,包括注意力机制与对比学习;4)视频审核目标检测算法,介绍YOLO系列等模型应用;5)虚拟主播的核心人脸识别与表情驱动技术;6)视频分割与实例分割算法;7)推荐系统中的自监督与对比学习。每个问题均包含技术原理、数学公式、代码实现和B站实际应用场景,突出算法在二次元视频社区的工程落地能力。
2025-07-22 23:46:38
651
原创 小红书视觉算法面试30问全景精解
小红书视觉算法面试聚焦内容理解、商品识别、多模态推荐等核心场景,考察算法在社区生态中的落地能力。本文精选30题,涵盖图像检索、多标签分类、多模态融合、目标检测、人脸分析、实例分割和对比学习等关键技术,提供理论解析与代码示例。面试重点考察候选人对视觉基础理论的掌握程度,以及在复杂社区场景中将算法转化为实际业务价值的能力,如商品图像检索的对比学习、多模态推荐的特征融合、内容审核的目标检测等。这些技术广泛应用于小红书的推荐系统、内容理解和安全审核等核心业务场景。
2025-07-22 23:45:56
594
原创 微博视觉算法面试30问全景精解
摘要 本文系统梳理了微博视觉算法岗位面试的核心考察点,精选30个典型问题,涵盖内容审核、实时美颜、多标签分类、目标检测、人脸识别、视频分割、多模态融合、时序建模等关键技术。每个问题从算法原理、数学表达、代码实现到工程应用四个维度进行深度解析,突出社交媒体场景下视觉算法的特殊挑战与解决方案。内容聚焦微博等社交平台特有的海量数据处理、实时性要求、跨模态理解等实际问题,为应聘者提供从理论到实践的完整指导框架,助力在算法面试中展现扎实的技术功底和解决实际业务问题的能力。
2025-07-22 23:39:03
380
原创 快手视觉算法面试30问全景精解
本文系统整理了快手视觉算法岗位面试中的30个核心问题,覆盖短视频、实时推荐、视觉创新等关键领域。问题涵盖实时美颜、多标签分类、多模态融合、目标检测、人脸识别、视频分割、自监督学习、时序建模等算法方向,每个问题均提供技术解析、原理公式、示例代码及应用场景说明。这些内容全面考察候选人在视觉算法领域的理论深度、工程实践和创新能力,适合准备短视频平台视觉算法岗位的求职者参考学习,帮助掌握快手等一线大厂视觉算法面试的核心考点和技术要求。
2025-07-22 23:36:46
788
原创 小米视觉算法面试30问全景精解
本文精选小米视觉算法岗位面试中的9个典型问题,涵盖手机影像、智能家居、机器人等核心应用场景。问题包括超分辨率重建、目标检测、端云协同、夜景降噪、人脸识别、视觉SLAM、模型量化、HDR成像和行为识别等关键技术点。每个问题从考察要点、原理解析、代码实现和工程应用四个维度进行深入剖析,展现小米视觉算法在智能终端与物联网领域的创新实践。通过这些问题,全面考察候选人的理论基础、工程能力和产业落地思维,助力在面试中展现小米生态所需的视觉算法综合能力。
2025-07-22 23:32:13
606
原创 网易视觉算法面试30问全景精解
摘要 本文系统梳理了网易视觉算法岗位面试的30个核心问题,全面覆盖游戏视觉、智能娱乐、内容审核、教育智能化等业务场景的关键技术。从实时检测分割、人脸表情分析、多模态融合到3D重建点云处理,问题设计兼顾理论深度与工程实践,突出网易在内容生态与智能娱乐领域的算法创新。每个问题提供原理公式、代码示例和落地应用说明,帮助候选人掌握网易视觉算法的考察重点。面试既考察传统CV基础,也关注多模态理解、小样本学习等前沿方向,以及算法在网易云音乐、游戏等产品中的工程优化能力,全面评估候选人的技术广度和产业落地思维。
2025-07-22 23:27:15
353
原创 拼多多视觉算法面试30问全景精解
本文系统梳理了拼多多视觉算法岗位面试的30个核心问题,涵盖商品图像分类、以图搜图、多标签分类、多模态融合、属性识别、数据增强、视觉Transformer、自监督学习等关键技术。每个问题提供详细解答、数学原理、代码实现及工程应用场景,突出拼多多在智能零售领域的算法创新与落地能力。文章聚焦大规模商品识别、极致性价比、复杂供应链等业务场景,帮助候选人全面掌握视觉算法在电商平台的应用要点,提升面试竞争力。
2025-07-22 23:20:43
692
原创 美团视觉算法面试30问全景精解
摘要 美团视觉算法面试30问全景精解涵盖了智能配送、餐饮识别、城市感知等核心场景的关键技术。文章针对目标检测与路径规划、多标签分类、实例分割、时序建模、优化调度、小样本学习、多模态融合等七大方向,深入剖析了美团业务场景下的算法应用: 智能配送系统:结合YOLOv5和A*算法实现目标检测与最优路径规划 餐饮识别技术:采用多标签损失和注意力机制提升菜品分类精度 城市视觉感知:通过Mask R-CNN实现实例分割和场景理解 智能门店分析:LSTM+Transformer建模人流量统计和行为识别 配送优化调度:遗传
2025-07-22 23:15:07
772
原创 京东视觉算法面试30问全景精解
京东视觉算法面试聚焦零售与工业场景的AI落地能力,涵盖商品检索、仓储检测、属性识别、缺陷检测等核心问题。文章系统梳理了30个典型面试问题及解答方案,包括商品图像检索的ANN算法与对比学习、智能仓储中的YOLOv5+DeepSORT检测跟踪框架、多任务属性识别模型设计、供应链场景的Mask R-CNN分割应用、工业质检的无监督异常检测方法等关键技术。每个问题提供理论推导、代码实现和京东实际应用案例,突显算法在亿级商品管理、智能物流、自动化质检等业务中的工程转化价值,为候选人应对大厂视觉算法面试提供全方位指导。
2025-07-22 23:08:21
347
原创 字节跳动视觉算法面试30问全景精解
本文系统梳理了字节跳动视觉算法岗位面试的核心考察点,精选30个典型问题,涵盖实时视频美颜、短视频内容理解、直播人像分割、视频时序建模、表情识别、视觉Transformer、3D人脸重建等前沿技术方向。每个问题分析包含技术原理、数学表达、代码实现及工程应用场景,突出字节跳动作为全球内容科技公司在算法创新与规模落地方面的独特要求。文章为视觉算法工程师提供了从基础理论到产业实践的全面面试准备指南,尤其强调多模态融合、实时处理、大规模内容理解等与字节跳动业务高度相关的技术能力。
2025-07-22 23:01:35
441
原创 华为视觉算法面试30问全景精解
以上30个问题涵盖了华为视觉算法岗位面试的核心知识点,建议结合项目经验深入理解,祝大家面试顺利,早日拿到心仪offer!
2025-07-22 22:57:36
505
原创 阿里巴巴视觉算法面试30问全景精解
本文系统梳理了阿里巴巴视觉算法岗位的30个核心面试问题,涵盖图像风格迁移、多尺度特征融合、文本检测识别、视觉Transformer和3D点云检测等关键技术。文章不仅深入解析了算法原理(如Gatys风格迁移公式、FPN特征融合、CRNN模型结构等),还提供了工程实现代码示例(如PyTorch实现的MultiHeadSelfAttention模块)。重点突出了阿里在电商、物流等业务场景中的实际应用,如商品图美化、物流单据OCR等,体现了对算法创新与工程落地能力的双重考察。全文兼顾理论深度与实践指导价值,为应聘者
2025-07-22 22:54:57
807
原创 百度视觉算法岗位30问及详解
以上30个问题涵盖了百度视觉算法岗位面试的核心知识点,建议结合项目经验深入理解,祝大家面试顺利,早日拿到心仪offer!
2025-07-22 00:27:23
870
原创 腾讯视觉算法岗位30问及详解
以上30个问题涵盖了腾讯视觉算法岗位面试的核心知识点,建议结合项目经验深入理解,祝大家面试顺利,早日拿到心仪offer!
2025-07-22 00:18:24
545
原创 海康威视视觉算法岗位30问及详解
卷积神经网络(Convolutional Neural Network, CNN)是一类专门用于处理具有类似网格结构数据(如图像、语音、视频等)的深度神经网络。CNN 的核心思想是通过卷积操作提取输入数据的局部特征,并通过多层堆叠实现从低级到高级的特征抽象。与传统的全连接神经网络相比,CNN 具有参数少、计算高效、泛化能力强等优点。原理说明:局部感受野(Local Receptive Field):每个神经元只与输入的一小块区域相连,能够捕捉局部特征。这样可以有效提取空间结构信息。
2025-07-21 23:22:13
1303
原创 一键批量修改XML标签名称:告别手工修改,高效管理标注数据
标注数据时发现标签名称有误?百个XML文件手动修改太耗时?这个Python脚本让你一键完成批量替换!在目标检测任务中,使用LabelImg等工具标注数据后,常会遇到需要批量修改标签名称的情况。例如将hat统一改为helmet,或将person改为head。手动逐个修改XML文件不仅低效还易出错。本文将详解如何用Python脚本一键完成XML标签的批量替换。
2025-06-11 16:28:12
1000
原创 yolov12-区域注意力:让计算机“看见”更智能
一张图片胜过千言万语,但计算机是如何在万千信息中抓住重点的呢?本文将为您解开注意力机制的神秘面纱,聚焦最新突破——区域注意力技术。在计算机视觉领域,注意力机制已成为现代AI模型的"大脑筛选器",它帮助计算机像人类一样专注于图像中最关键的部分。今天我们将深入探讨一种创新技术——机制,它正引领着YOLO等目标检测模型的性能革命!
2025-06-07 16:31:07
965
原创 CNN为什么比注意力机制更快?揭秘两大关键原因
CNN与注意力机制在视觉AI领域各有优势。CNN凭借局部卷积的线性计算复杂度(O(kLd))和高效缓存利用,在处理大尺寸图像时速度显著快于计算量指数增长(O(L²d))的注意力模型。注意力机制需频繁搬运庞大的中间矩阵,导致内存访问效率低下,加上多头机制等复杂设计进一步拖慢速度。当前混合架构(如MobileViTv3)正尝试兼顾二者优势。实时场景首选CNN,高精度场景可考虑混合方案。本质差异在于CNN的"公交专用道"式高效与注意力"全城调度"式灵活间的取舍。
2025-06-07 15:47:48
995
原创 构建高可靠NFS存储:自动化挂载保障机制的设计与优势
通过将Systemd服务控制智能重试脚本与文件系统锁定相结合,我们构建了一个面向生产环境的NFS高可靠挂载方案。该方案已在多个AI计算集群中验证,显著降低了因存储问题导致的业务中断率(从月均1.2次降至0次)。建议在关键业务存储系统中优先采用此类自动化保障设计,以提升系统鲁棒性。技术演进思考:未来可集成Prometheus监控模块,实时上报挂载状态,实现从"自动化"到"智能化"的跨越。
2025-03-18 15:08:49
986
原创 在 Ubuntu 中配置 NFS 共享服务的完整指南
网络文件系统(NFS)作为 Linux 系统间实现文件共享的标准协议,在分布式计算和容器化部署场景中具有重要作用。本文将详细演示如何在 Ubuntu 系统上配置 NFS 服务端与客户端,并实现可靠的持久化挂载。通过本文的配置,您已成功搭建了支持高可用性的 NFS 文件共享服务。建议在生产环境中配合 SSH 隧道或 VPN 增强安全性。对于 Kubernetes 等容器平台,可结合 PV/PVC 实现动态存储供给。NFS 协议规范 RFC 7530性能调优:尝试启用 async 模式并配合 UPS 电源。
2025-03-18 14:58:27
2246
1
原创 在瑞芯微RK3588平台上使用RKNN部署YOLOv8Pose模型的C++实战指南
在人工智能和计算机视觉领域,人体姿态估计是一项极具挑战性的任务,它对于理解人类行为、增强人机交互等方面具有重要意义。YOLOv8Pose作为YOLO系列中的新成员,以其高效和准确性在人体姿态估计任务中脱颖而出。本文将详细介绍如何在瑞芯微RK3588平台上,使用RKNN(Rockchip Neural Network Toolkit)框架部署YOLOv8Pose模型,并进行C++代码的编译和运行。注 本文全部代码、数据、模型、库,均已放置在文末的百度云盘链接里
2024-12-24 12:09:25
1462
原创 使用RKNN进行YOLOv8人体姿态估计的实战教程:yolov8-pose.onnx转yolov8-pose.rknn+推理全流程
之前文章有提到“YOLOv8的原生模型包含了后处理步骤,其中一些形状超出了RK3588的矩阵计算限制,因此需要对输出层进行一些裁剪”,通过裁剪后得到的onnx能够顺利的进行rknn转换,本文将对转rnkk过程,以及相应的后处理进行阐述。并在文末附上全部源码、数据、模型的百度云盘链接。
2024-12-24 12:00:02
998
原创 RK3588平台上YOLOv8-pose模型转换:yolov8-pose.pt转yolov8-pose.onnx
YOLOv8的原生模型包含了后处理步骤,其中一些形状超出了RK3588的矩阵计算限制,因此需要对输出层进行一些裁剪。本文将详细介绍YOLOv8模型从PyTorch格式(.pt)转换为适合RK3588平台上推理的yolov8-pose.onnx结构,以便后续能够顺利将onnx转rknn格式并在RK3588设备上高效运行。注本文涉及的全部代码都已上传到百度云盘,链接置于文末
2024-12-24 11:44:21
774
原创 RK3588平台上YOLOv8模型转换与CentOS 7.8 Docker镜像拉取超时问题解决指南
YOLOv8的原生模型包含了后处理步骤,其中一些形状超出了RK3588的矩阵计算限制,因此需要对输出层进行一些裁剪。本文将详细介绍如何在RK3588平台上将YOLOv8模型从PyTorch格式(.pt)转换为Rockchip的RKNN格式,以便在RK3588设备上高效运行。
2024-12-17 09:39:01
863
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人