在海洋安全、港口监管和海上交通管理等领域,合成孔径雷达(Synthetic Aperture Radar, SAR)以其全天时、全天候成像能力,在船舶目标检测任务中发挥着关键作用。近年来,随着深度学习技术的快速发展,基于SAR图像的自动化船舶检测与识别方法逐渐成为研究热点。然而,算法性能的提升高度依赖于高质量、结构化且多样化的训练数据,这使得SAR船舶检测数据集的建设与评估显得尤为重要。
目前,国内外已发布多个SAR船舶检测公开数据集,涵盖从低分辨率到高分辨率、从单模态到多模态、从图像级标注到像素级分割等多种类型。这些数据集在目标规模、图像来源、标注方式和适用场景等方面各具特点,为SAR图像下的目标检测、实例分割、跨模态融合等任务提供了坚实的数据基础。
本文将系统梳理六个具有代表性的数据集,包括LS-SSDD-v1.0、HRSID、AIR-SARShip-1.0、FUSAR-Ship、OpenSARShip2.0和SAR-Ship-Dataset。通过对其数据来源、标注方式、适用任务、优势与局限等方面的综合分析,旨在为后续SAR船舶检测研究提供参考依据,并指出当前数据资源在多样性、分辨率、场景适配性等方面仍存在的挑战与发展方向。
-
LS-SSDD-v1.0(Large-Scale SAR Ship Detection Dataset)
• 描述:是对原始SSDD的扩展,具有更多样化场景和更细致标注。
• 图像数量:大约1160幅SAR图像,包含超1万艘船只目标。
• 优点:支持大尺度目标检测实验。
• 论文:LS-SSDD-v1.0: A Deep Learning Dataset Dedicated to Small Ship Detection from Large-Scale Sentinel-1 SAR Images
来自 https://www.mdpi.com/2072-4292/12/18/2997
• 数据集链接: