SAR船舶目标检测数据集

在海洋安全、港口监管和海上交通管理等领域,合成孔径雷达(Synthetic Aperture Radar, SAR)以其全天时、全天候成像能力,在船舶目标检测任务中发挥着关键作用。近年来,随着深度学习技术的快速发展,基于SAR图像的自动化船舶检测与识别方法逐渐成为研究热点。然而,算法性能的提升高度依赖于高质量、结构化且多样化的训练数据,这使得SAR船舶检测数据集的建设与评估显得尤为重要。

目前,国内外已发布多个SAR船舶检测公开数据集,涵盖从低分辨率到高分辨率、从单模态到多模态、从图像级标注到像素级分割等多种类型。这些数据集在目标规模、图像来源、标注方式和适用场景等方面各具特点,为SAR图像下的目标检测、实例分割、跨模态融合等任务提供了坚实的数据基础。

本文将系统梳理六个具有代表性的数据集,包括LS-SSDD-v1.0、HRSID、AIR-SARShip-1.0、FUSAR-Ship、OpenSARShip2.0和SAR-Ship-Dataset。通过对其数据来源、标注方式、适用任务、优势与局限等方面的综合分析,旨在为后续SAR船舶检测研究提供参考依据,并指出当前数据资源在多样性、分辨率、场景适配性等方面仍存在的挑战与发展方向。

  1. LS-SSDD-v1.0(Large-Scale SAR Ship Detection Dataset)
    • 描述:是对原始SSDD的扩展,具有更多样化场景和更细致标注。
    • 图像数量:大约1160幅SAR图像,包含超1万艘船只目标。
    • 优点:支持大尺度目标检测实验。
    • 论文:LS-SSDD-v1.0: A Deep Learning Dataset Dedicated to Small Ship Detection from Large-Scale Sentinel-1 SAR Images
    来自 https://www.mdpi.com/2072-4292/12/18/2997
    • 数据集链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值