
spss
文章平均质量分 94
Olivia-gogogo
吾将上下而求索
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
SPSS第二十一讲:多元线性回归分析(超级详细)
多元线性回归分析是一种统计方法,用于评估一个因变量与多个自变量之间的关系。进行多元线性回归分析时,需要满足以下条件:自变量和因变量之间应有理论上的因果关系;因变量应为连续型变量;各自变量与因变量之间应存在线性关系;残差应满足正态性、独立性和方差齐性;多个自变量之间不应存在多重共线性。此外,多元线性回归分析还需满足线性(Linear)、正态性(Normal)、独立性(Independence)、方差齐性(Equal Variance)这四大基本前提条件,简称LINE。在实际操作中,可以通过绘制散点图来探讨自变原创 2025-06-02 10:13:02 · 1137 阅读 · 0 评论 -
SPSS第二十讲: 一元线性回归分析怎么做?
本讲介绍了一元线性回归分析,这是一种用于研究两个变量间数量依存关系的统计方法。通过一个实战案例,探讨了人均月收入与年体育消费额之间的关系,并构建了一元线性回归模型进行显著性检验。文章详细阐述了回归模型的基本构成,包括因变量、自变量、误差项、常量和回归系数,并介绍了使用SPSS进行回归分析的步骤和结果解读。此外,强调了回归分析的前提条件,如变量间的线性关系、残差的独立性、方差齐性和正态性,并提供了规范报告的方式。最后,总结了回归分析的关键点,包括变量间的因果关系、线性关系的判断、回归分析的前提条件以及报告内容原创 2025-06-02 10:12:45 · 979 阅读 · 0 评论 -
SPSS第十九讲:秩相关分析怎么做?
当数据不符合正态分布或为定序尺度时,线性相关分析不再适用,此时应采用秩相关分析。秩相关分析通过将数据按大小排列位次,用位次代替实际数据来计算统计量,适用于非正态分布的定量资料或等级资料。常用的方法包括Spearman相关分析和Kendall秩相关分析。以篮球比赛名次与投篮命中率的关系为例,通过Spearman相关分析发现两者存在显著相关关系(r=-0.818, P=0.004)。秩相关分析适用于双变量中至少有一个为非正态分布或等级资料的情况,通常选择Spearman方法,但需注意其对定量资料的信息损失可能降原创 2025-06-02 10:12:31 · 813 阅读 · 0 评论 -
SPSS第十八讲:如何进行线性相关分析?
在统计学中,变量间的关系分为确定性关系和非确定性关系,后者即相关关系。线性相关分析用于推断两个变量间的关系,常用方法包括绘制散点图和计算Pearson相关系数r。散点图可直观展示变量间是否存在线性关系,而r系数则量化关系的密切程度和方向,其值介于-1和1之间。通过SPSS软件进行正态性检验、绘制散点图及计算r值,可以分析如体重与肺活量等变量间的相关性。例如,某案例中通过Pearson相关分析发现体重与肺活量存在显著正相关(r=0.828, p=0.001)。规范报告应包含图表和文字描述,以清晰展示分析结果。原创 2025-06-02 10:12:15 · 880 阅读 · 0 评论 -
加餐| 如何将非正态分布数据转换为正态分布的?手把手教你SPSS操作
本课程详细介绍了如何将非正态分布数据转换为正态分布,特别是在使用SPSS进行统计分析时。课程首先强调了参数检验中正态分布的重要性,并提出了两种处理非正态数据的方法:使用非参数检验或对数据进行转换。接着,课程详细讲解了针对正偏态和负偏态数据的不同转换方法,包括对数变换、平方根变换、倒数变换等,并提供了相应的SPSS操作语句。此外,课程还通过实战案例演示了如何检验数据的正态性,并介绍了正态得分法作为一种转换手段。最后,课程总结了正态分布转换的多种方法,并提醒在实际应用中,如果转换不成功,应考虑使用非参数检验方法原创 2025-06-02 10:11:58 · 816 阅读 · 0 评论 -
SPSS第十七讲 | 配对设计卡方检验怎么做?
《小白爱上SPSS》第十七讲介绍了配对设计卡方检验的应用,特别是McNemar检验的使用。配对设计通常涉及对同一样本进行两种不同处理或前后测量,以观察其差异或一致性。当结局指标为计数资料时,配对设计卡方检验是合适的统计方法。课程通过一个实际案例,即50名大侠观看热身视频前后热身习惯的变化,展示了如何在SPSS中进行McNemar检验。操作步骤包括数据加权、交叉表设置、统计选项选择及结果解读。结果显示,观看视频后热身比率显著提高,证明了视频干预的有效性。此外,课程还强调了McNemar检验的特点,即仅通过p值原创 2025-06-02 10:11:38 · 1019 阅读 · 0 评论 -
SPSS第十六讲 | 多组率卡方检验和Fisher确切法
《小白爱上SPSS》第十六讲介绍了多组率卡方检验和Fisher确切法的应用。当数据的分组变量为两个或多个水平,结局变量为二分类或多分类时,可以使用这两种方法进行分析。卡方检验适用于不超过20%单元格的理论频数T<5的情况,而Fisher确切概率法则适用于超过20%单元格的T<5或至少一个T<1的情况。课程通过一个关于不同运动场地与运动损伤关系的案例,详细讲解了SPSS的操作步骤,包括个案加权、卡方检验的设置和结果解读。最后,强调了在卡方检验结果显著时,需要进行多重比较,并提供了规范报告的建原创 2025-06-02 10:11:09 · 1347 阅读 · 0 评论 -
SPSS第十五讲 | 两组率卡方检验和Fisher确切法怎么做?
《小白爱上SPSS》课程第十五讲介绍了用于分析两组二分类变量差异的统计方法,即卡方检验和Fisher确切法。当研究数据分为两组,且结局变量为二分类时,这两种方法适用于探讨两组率是否存在显著性差异。卡方检验通过比较理论值与实际值的吻合程度来判断样本是否来自同一总体,而Fisher确切法则基于二项分布计算极端事件的概率。在SPSS中,根据样本量和期望值的大小选择使用卡方检验、校正卡方检验或Fisher确切法。课程通过一个关于运动前热身与运动损伤关系的案例,详细讲解了SPSS的操作步骤和结果解读,并提供了规范的报原创 2025-05-18 15:34:44 · 1144 阅读 · 0 评论 -
SPSS第十四讲 | 多独立样本秩和检验如何做?
《小白爱上SPSS》课程第十四讲介绍了多独立样本秩和检验,适用于非正态分布数据。通过Kruskal-Wallis H检验,可以比较多组独立样本的总体分布位置差异,无需满足正态性和方差齐性条件。课程通过一个实战案例,展示了如何利用SPSS进行正态性检验、Kruskal-Wallis H检验及多重比较,并解读了结果。最终,规范报告了不同训练年限对心理疲劳感的影响,强调了Kruskal-Wallis H检验在非正态分布数据中的重要性。原创 2025-05-18 15:31:48 · 613 阅读 · 0 评论 -
SPSS第十三讲 | 配对样本的秩和检验如何做?很简单!
《小白爱上SPSS》课程第十三讲介绍了配对样本的秩和检验,特别是Wilcoxon符号秩检验,用于在总体分布未知的情况下推断两个相关样本的总体分布是否有差异。课程通过一个实战案例,即评估学院食堂整顿前后大侠们满意度的变化,详细讲解了如何应用该检验方法。首先,通过计算整顿前后满意度的差值并进行正态性检验,确定数据是否适合使用Wilcoxon检验。接着,课程演示了在SPSS中执行Wilcoxon检验的步骤,并解释了如何解读检验结果。最后,课程强调了在数据不服从正态分布时,应使用中位数和四分位距进行描述性统计,并提原创 2025-05-18 15:30:16 · 931 阅读 · 0 评论 -
SPSS第十二讲 | 两独立样本秩和检验如何做?
即指定比较哪两组。在本例,我们比较男侠和女侠组,他们在数据库赋值为1和2,因此这里填写1,2;此处填什么数据,需要和数据库的赋值对应起来,且不能填写文字或者字母,只能填数字。原创 2025-05-18 15:29:17 · 1107 阅读 · 0 评论 -
SPSS第十一讲 | 单样本秩和检验如何做?很轻松!
你好!欢迎参加《小白爱上SPSS》课程。前面学习的单样本T检验(点击复习),有一个重要前提条件:连续型变量要服从正态分布(或者近似正态分布)。如果数据是严重偏态分布,或者采用数据转化法,将其转为正态数据;或者采用,即单样本秩和检验。单样本秩和检验是将非正态样本的与已知总体中位数进行比较。它是一种非参数样本检验,基于样本的秩次排列,而非平均值。秩次指的是将数值变量值或等级变量值按一定顺序(一般是从小到大)所排列的序号,通俗理解也就是排名。例如把学生的成绩(连续型变量)从小到大排名(次序变量)。原创 2025-05-18 15:28:12 · 778 阅读 · 0 评论 -
SPSS第十讲 | 两因素重复测量的方差分析(史上最全,做实验的看过来)
《小白爱上SPSS》课程介绍了在科学研究中常用的两因素重复测量实验设计,特别是针对实验干预效果的研究。课程通过一个实际案例,探讨了高强度间歇运动和中等强度有氧运动对减肥效果的影响。案例中,24名肥胖者被随机分配到两组,分别在干预前、干预6周和干预12周测量BMI值。课程详细讲解了如何通过SPSS进行正态性检验、重复测量方差分析,以及如何解读分析结果。最终,通过统计分析发现,高强度间歇运动在干预后期显著降低了BMI值,而中等强度运动的效果则不明显。课程强调了在实验设计中考虑时间趋势和多次测量的重要性,以及如何原创 2025-05-18 15:10:02 · 860 阅读 · 0 评论 -
SPSS第九讲 | 两因素析因设计的方差分析,超级详细
《小白爱上SPSS》课程介绍了析因设计(全因子实验设计)的基本概念和应用。析因设计通过交叉分组两个或多个因素的不同水平,分析各因素的主效应、交互效应和简单效应。课程通过一个实战案例,探讨了运动训练和饮食控制对肥胖大侠BMI值减少量的影响,并详细讲解了SPSS的操作步骤和结果解读。课程强调,若两因素间存在交互效应,需重点分析简单效应,而非主效应。最后,课程提供了规范报告的方式,并预告了下一节关于两因素重复测量方差分析的内容。原创 2025-05-18 15:03:49 · 977 阅读 · 0 评论 -
SPSS第八讲 | 单因素重复测量方差分析怎么做?
《小白爱上SPSS》课程介绍了重复测量方差分析的应用,适用于同一对象在不同时间点对同一指标进行多次测量的情况。与配对T检验不同,重复测量方差分析适用于三次或以上的重复测试。课程通过一个实战案例,探讨了有氧运动对心率的影响,详细讲解了SPSS的操作步骤,包括正态性检验和重复测量方差分析的具体实施。此外,课程还解释了组间设计和组内设计的概念,并强调了在进行重复测量方差分析前,数据需满足正态性和球形假设的条件。最后,课程提供了规范报告的方式,并预告了下一讲将介绍两因素方差分析。原创 2025-05-18 14:58:32 · 1141 阅读 · 0 评论 -
SPSS第七讲 | 单因素方差分析怎么做?
《小白爱上SPSS》课程介绍了单因素方差分析(One-Way ANOVA)的应用,适用于比较三组及以上连续型数据的均值差异。课程通过一个实际案例,探讨了不同教学方法对铅球教学效果的影响,详细讲解了SPSS操作步骤,包括正态性检验、方差齐性检验、F检验及事后多重比较。结果显示,不同教学方法对铅球成绩有显著影响,A1教法显著优于A2和A3教法,而A2和A3教法之间无显著差异。课程还强调了多组数据比较时不宜使用两两T检验,以避免增加假阳性错误的风险。原创 2025-05-18 14:55:24 · 802 阅读 · 0 评论 -
SPSS第六讲 | 配对样本均数T检验
《小白爱上SPSS》课程介绍了配对样本均数T检验的应用,特别适用于实验性研究设计。与两独立样本T检验不同,配对样本T检验用于两组有关联的数据,如自身前后配对、异体配对和自身平行配对。课程通过一个实战案例,即研究长时间持续运动对血尿酸浓度的影响,详细讲解了如何选择适当的统计方法、进行SPSS操作以及结果解读。案例中,通过配对样本T检验发现长时间持续运动显著提升了血尿酸浓度。课程还强调了统计分析策略的重要性,并预告了下一讲将介绍单因素方差分析。原创 2025-05-18 14:53:35 · 958 阅读 · 0 评论 -
SPSS第五讲 | 两独立样本均数T检验,你会了吗?
《小白爱上SPSS》课程介绍了两独立样本均数T检验的应用,该检验用于比较两个不同样本的总体均数是否存在差异。课程通过一个实战案例,比较了田径专业和足球专业学生的100米跑步成绩,展示了从数据收集到SPSS操作的全过程。案例中,首先进行正态性检验,确认数据符合正态分布后,采用两独立样本T检验进行分析。结果显示,田径专业学生的平均成绩显著快于足球专业学生,差异具有统计学意义。课程强调了在进行T检验前必须进行正态性检验,并根据方差齐性结果选择适当的检验方法。此外,课程还提供了规范报告统计分析结果的建议,包括报告t原创 2025-05-18 14:51:49 · 1070 阅读 · 0 评论 -
SPSS第四讲 | 单样本T检验怎么做?很单纯很简单!
《小白爱上SPSS》课程介绍了单样本t检验的基本概念和应用场景。单样本t检验用于比较单个样本的均值与给定常值之间是否存在显著差异,适用于连续型数据且数据需服从正态分布。课程通过一个实战案例,展示了如何利用SPSS进行正态性检验和单样本t检验,并详细解读了检验结果。案例中,38名大侠的体重数据与全国成年人体重均值进行比较,结果显示大侠体重显著高于全国均值。课程强调了规范报告的重要性,建议报告t值、p值和差值的95%置信区间,并简要报告正态性检验结果。原创 2025-05-18 14:50:41 · 877 阅读 · 0 评论 -
SPSS第三讲 | 正态分布怎么检验?看这篇文章就够了
在《小白爱上SPSS》课程的第三讲中,重点介绍了如何检验数据的正态分布,这是进行t检验、方差分析等统计方法的前提。课程详细讲解了三种检验正态分布的方法:图形法(包括直方图、Q-Q图和P-P图)、偏度和峰度分析以及非参数检验法(如K-S检验和S-W检验)。通过这些方法,可以判断数据是否服从正态分布,从而选择合适的统计分析方法。课程强调,在实际应用中,不应过分依赖单一的检验方法,而应结合多种图形和统计量进行综合判断。此外,课程还提醒,对于统计方法而言,数据分布不必严格正态,只要不过于偏态即可。最后,课程预告了下原创 2025-05-18 14:49:44 · 1066 阅读 · 0 评论 -
SPSS第二讲 | 描述性统计,你学会了吗?
《小白爱上SPSS》第二讲介绍了描述性统计的基本概念和操作步骤。描述性统计主要包括集中量数(如平均数、中位数、众数)、差异量数(如标准差、方差、全距、四分位距)和分布形态(偏度和峰度)。课程通过一个40名大侠的案例,详细讲解了如何在SPSS中进行频数分析和描述分析,并强调了不同变量类型(分类变量和连续型变量)的描述策略。最后,课程指出在呈现统计结果时,应根据数据是否服从正态分布选择合适的描述指标,并预告了下一讲将介绍正态分布检验的方法。原创 2025-05-18 14:48:30 · 948 阅读 · 0 评论 -
SPSS第一讲 | 牛刀小试,构建SPSS数据如此简单
《小白爱上SPSS》课程的第一讲介绍了如何构建SPSS数据库。SPSS作为社会科学常用的统计软件,具有操作简便、功能齐全的特点。课程首先讲解了SPSS的基本界面,包括数据编辑窗口和结果输出窗口等。接着,详细说明了如何在SPSS中构建数据库,包括变量视图和数据视图的操作,以及如何设置变量的属性。此外,课程还介绍了如何从Excel导入数据到SPSS中,包括复制粘贴和直接导入两种方法,并强调了在导入后需要对数据进行整理和规范。本讲内容为后续的数据分析打下了基础。原创 2025-05-18 14:47:28 · 979 阅读 · 0 评论