NVIDIA GPU架构

NVIDIA GPU架构

Ada Lovelace(以数学家 Ada Lovelace 命名) 2022年 RTX4090,以及RTX40系列显卡(RTX 4090,RTX4080,RTX 4070 Ti等)都是Ada架构(消费级显卡);L20/L40(专业级显卡)


Hopper (以计算机科学家 Grace Hopper 命名)2022年赫柏 H100(专业级显卡)


Ampere (以物理学家 André-Marie Ampère 命名)2020年安培 A100(专业级显卡)


Turing (以计算机科学家 Alan Turing 命名)2018年图灵 2080Ti(消费级显卡);RTX5000,T4(专业级显卡)


Volta (以物理学家 Alessandro Volta 命名)2017年伏特 TiTan V(消费级显卡);V100(专业级显卡);


Pascal (以物理学家 Blaise Pascal 命名)帕斯卡 2016 GTX1080(消费级显卡);P100、P6000(专业级显卡)


Maxwell (以物理学家 James Clerk Maxwell 命名)麦克斯韦 2014年 GTX 9XX系列(消费级显卡);M5000、M4000(专业级显卡)


Kepler (以天文学家 Johannes Kepler 命名)开普勒 2012年 K80、K40M(专业级显卡)


Fermi (以物理学家 Enrico Fermi 命名)费米 2010年 Quadro 7000(专业级显卡)

注意⚠️:
这里的RTX是支持光线追踪技术,即real-time ray tracing。
专业级显卡不消费级显卡针对的用户群体不同,以及显卡性能具有差异:
专业级显卡针对的是工程师,设计师,企业,科研人员,性能更强;
消费级显卡针对的是游戏玩家,普通用户,性能相较于专业级做了阉割等一些差异。

NVIDIA GPU(图形处理器单元)架构与原理分析如下: NVIDIA GPU架构主要分为两个部分:SM(流处理器)和内存层次结构。 SM是NVIDIA GPU的核心组件,它由多个CUDA核心组成,用于处理并行计算任务。每个SM包含一定数量的CUDA核心,可以同时执行多个线程。SM还包括一些专用硬件单元,例如寄存器文件、共享内存和高速缓存。这些单元可以提供高效的数据存储和共享机制,以及加速计算速度。 NVIDIA GPU的内存层次结构包括全局内存、共享内存和寄存器文件。全局内存是最大的内存池,在所有SM中都可见。它用于存储大量数据,并在各个SM之间共享。共享内存是每个SM私有的一块内存空间,可以在SM内的线程之间进行快速共享。寄存器文件是每个CUDA核心私有的一块内存空间,用于存储核心执行时需要的数据。 NVIDIA GPU架构的原理是基于并行计算模型的。它可以同时执行大量线程,每个线程都在不同的CUDA核心上执行,从而实现高度并行的计算。通过将计算任务划分为小的线程块和网格,NVIDIA GPU可以将任务分配给多个SM并发执行,从而提高计算效率。 此外,NVIDIA GPU还支持CUDA编程模型,它可以使用CUDA编程语言进行开发。CUDA提供了丰富的API和工具,使开发者能够利用GPU的并行计算能力,提高计算性能和效率。 总而言之,NVIDIA GPU架构是一种基于并行计算的架构,通过同时执行大量线程和高效的内存层次结构,实现了高性能的数据处理和计算能力。它在许多领域,如科学计算、机器学习和游戏开发中发挥着重要的作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值