目录
12.1 随机变量(Random Variables,RVs)
12.1.1 离散随机变量(Discrete Random Variables)
12.1.2 连续随机变量(Continuous Random Variables)
12.1.3.3 中心矩(和方差)(Central moments (and variance))
12.1.3.4 高斯分布(Gaussian distribution)
12.1.3.5 归一化高斯函数和Q函数(Normalized Gaussian, and the Q function)
12.1.3.6 中心极限定理(Central limit theorem)
12.2 平稳随机过程(Stationary Random Processes)
12.2.1 自相关函数(Auto-correlation function)
12.2.1.1 激励示例(Motivational example)
12.2.2 广义平稳(WSS)随机过程(Wide Sense Stationary (WSS) Random Processes)
12.2.3 遍历随机过程 (Ergodic Random Processes)
前言
本笔记是基于北京都柏林学院2022年EEEN3005J Communication Theory课程课件总结出的笔记。任课教师为Dr Deepu John。
阳老板建议: 本节内容之后的为期末考试内容,前11章内容配合期末试卷一同使用效果最佳。
Chapter 12 Random Signals
12.1 随机变量(Random Variables,RVs)
随机变量X是一个与实验结果有关的数字。如果我们重复实验,我们可能会得到一个不同的数字,以一种不可预测的方式——每次重复实验都会产生一个样本值。
12.1.1 离散随机变量(Discrete Random Variables)
离散随机变量是指只能从有限的一组可能值中取值的变量,示例包括:
• 掷骰子
• 从牌堆中挑选一张牌
• 轮盘赌的价值。
我们通过其概率质量函数(PMF)来描述离散随机变量,定义如下:
pmf告诉我们每个可能结果的概率。例子:
• 扔骰子:
• 从牌堆中挑选一张牌:
• 轮盘赌:
注意所有概率之和=1。
这是因为,当然,可以保证(即概率=1)每次都会发生一个结果。我们可以用数学来表达:
其中的总和是x的所有可能值。
12.1.2 连续随机变量(Continuous Random Variables)
连续随机变量可以在连续范围内取任意值,
例如
• 随机选择的人的身高。
• 噪声电阻器上的电压振幅
让我们进一步看看第一个例子,并提出以下问题:
1.随机选择的人身高1.7米的概率是多少?
2.随机选择的人身高2.7米的概率是多少?
在北京(2010年),人的平均身高是1.747米,所以我们可能认为
170万人的概率远远高于270万人,对吗?也许不是。如果…怎么办
我们将问题重新表述如下:
1.随机选择的人身高1.70000000’米的概率是多少?
2.随机选择的人身高2.70000000’米的概率是多少?
(这里的’意味着永远重复)。
我们没有改变这个问题,但现在答案是什么?
0 !!!!
我们可以把它放在数学中,对于一个连续的随机变量来说
因此,对于x的每一个可能值,连续RV的PMF为零;
PMF是连续RVs概率的无用度量,我们需要另一个工具。。。
12.1.2.1 概率密度函数(PDF)
基于以上讨论,讨论X在一系列值上的概率才有意义。因此,我们定义了概率密度函数(PDF),它具有以下性质:
其在[a,b]范围内的积分(或从x=a到b的曲线下的面积)给出了x在该范围内(包括)获得一个值的概率。
现在我们可以问以下问题:
1.随机选择的人身高在1.69到1.71米之间的概率是多少?
2.随机选择的人身高在2.69到2.71米之间的概率是多少?
现在,这些问题将有非零答案,如图12.1.1所示。
PDF具有以下性质
• 该函数为非负函数,
• 该函数总和为1,
12.1.2.2 累积分布函数(CDF)
有时(实际上通常)更容易考虑RV小于(或等于)某个值的概率,因此我们将连续随机变量X的累积分布函数(CDF)定义为:
一些属性:
• 它包含与PDF相同的所有信息
• 这是一个非递减函数
12.1.2.3 CDF和PDF之间的关系
从CDF的定义来看:
其中是
的PDF。
这也可以写为:
从这两个表达式可以清楚地看出,或
足以完全描述独立RV,因为我们可以使用它们来计算任何结果的概率。
根据它们,我们可以计算RV函数的值,以及一些重要的基本统计数据,例如均值和方差。