通信原理复习笔记(EEEN3005J Communication Theory)(8)

目录

前言

Chapter 12 Random Signals

12.1 随机变量(Random Variables,RVs)

12.1.1 离散随机变量(Discrete Random Variables)

12.1.2 连续随机变量(Continuous Random Variables)

12.1.2.1 概率密度函数(PDF)

12.1.2.2 累积分布函数(CDF)

12.1.2.3 CDF和PDF之间的关系

12.1.3 预期(Expectation)

12.1.3.1 函数的预期值

12.1.3.2 矩(moment) 

12.1.3.3 中心矩(和方差)(Central moments (and variance))

12.1.3.4 高斯分布(Gaussian distribution)

12.1.3.5 归一化高斯函数和Q函数(Normalized Gaussian, and the Q function)

 这种关系如图12.1.2所示。

 12.1.3.6 中心极限定理(Central limit theorem)

12.1.4 相关随机变量(Correlated RVs)

12.2 平稳随机过程(Stationary Random Processes)

12.2.1 自相关函数(Auto-correlation function)

12.2.1.1 激励示例(Motivational example)

12.2.2 广义平稳(WSS)随机过程(Wide Sense Stationary (WSS) Random Processes)

12.2.3 遍历随机过程 (Ergodic Random Processes)


前言

本笔记是基于北京都柏林学院2022年EEEN3005J Communication Theory课程课件总结出的笔记。任课教师为Dr Deepu John。

阳老板建议: 本节内容之后的为期末考试内容,前11章内容配合期末试卷一同使用效果最佳。

Chapter 12 Random Signals

12.1 随机变量(Random Variables,RVs)

随机变量X是一个与实验结果有关的数字。如果我们重复实验,我们可能会得到一个不同的数字,以一种不可预测的方式——每次重复实验都会产生一个样本值。

12.1.1 离散随机变量(Discrete Random Variables)

离散随机变量是指只能从有限的一组可能值中取值的变量,示例包括:

• 掷骰子

• 从牌堆中挑选一张牌

• 轮盘赌的价值。

我们通过其概率质量函数(PMF)f_x(x)来描述离散随机变量,定义如下:

pmf告诉我们每个可能结果的概率。例子:

• 扔骰子:

• 从牌堆中挑选一张牌:

• 轮盘赌:

注意所有概率之和=1。

这是因为,当然,可以保证(即概率=1)每次都会发生一个结果。我们可以用数学来表达:

 其中的总和是x的所有可能值。

12.1.2 连续随机变量(Continuous Random Variables)

连续随机变量可以在连续范围内取任意值,

例如

        • 随机选择的人的身高。

        • 噪声电阻器上的电压振幅

让我们进一步看看第一个例子,并提出以下问题:

1.随机选择的人身高1.7米的概率是多少?

2.随机选择的人身高2.7米的概率是多少?

在北京(2010年),人的平均身高是1.747米,所以我们可能认为

170万人的概率远远高于270万人,对吗?也许不是。如果…怎么办

我们将问题重新表述如下:

1.随机选择的人身高1.70000000米的概率是多少?

2.随机选择的人身高2.70000000米的概率是多少?

(这里的意味着永远重复)。

我们没有改变这个问题,但现在答案是什么?

0 !!!!

我们可以把它放在数学中,对于一个连续的随机变量来说

因此,对于x的每一个可能值,连续RV的PMF为零;

PMF是连续RVs概率的无用度量,我们需要另一个工具。。。

12.1.2.1 概率密度函数(PDF)

基于以上讨论,讨论X在一系列值上的概率才有意义。因此,我们定义了概率密度函数(PDF),它具有以下性质:

其在[a,b]范围内的积分(或从x=a到b的曲线下的面积)给出了x在该范围内(包括)获得一个值的概率。

现在我们可以问以下问题:

1.随机选择的人身高在1.69到1.71米之间的概率是多少?

2.随机选择的人身高在2.69到2.71米之间的概率是多少?

现在,这些问题将有非零答案,如图12.1.1所示。

 PDF具有以下性质

• 该函数为非负函数,

• 该函数总和为1,

12.1.2.2 累积分布函数(CDF)

有时(实际上通常)更容易考虑RV小于(或等于)某个值的概率,因此我们将连续随机变量X的累积分布函数(CDF)定义为:

一些属性:

• 它包含与PDF相同的所有信息

• 这是一个非递减函数

 

12.1.2.3 CDF和PDF之间的关系

从CDF的定义来看:

其中f_xx的PDF。

这也可以写为:

从这两个表达式可以清楚地看出,f_xF_x足以完全描述独立RV,因为我们可以使用它们来计算任何结果的概率。

根据它们,我们可以计算RV函数的值,以及一些重要的基本统计数据,例如均值和方差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值