
python量化交易策略
文章平均质量分 95
以Python为工具的金融量化学习与研究。
侯小啾
数据分析师。2022年度博客之星,专注于数据分析,机器学习,人工智能,自动化办公,计量经济,量化金融等领域。技术咨询、商务合作事宜请私信。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
OBV指标交易策略(累积能量潮与移动能量潮,成交量多空比率净额及相关应用原则)
目录1.OBV指标计算方法1.1 累积OBV1.2 移动型OBV1.3 修正型OBV2. OBV指标理论依据3. OBV指标的交易策略制定4.OBV指标的应用原则OBV的英文全称为On Balance Volume,中文为能量潮。该指标认为,市场的动能应该由成交量的变化情况来反映。成交量可以反映出市场买卖双方的活跃情况,量是价的先行者,价格的变化情况与成交量有着密切关系。OBV指标从量入手对价格走势做出预测,将成交量指标化,制成趋势线,配合股价趋势线,通过价格的变动及成交量的增减关系来推测股价变动趋势。原创 2021-05-02 22:26:05 · 4325 阅读 · 0 评论 -
量价关系分析
目录1.量价关系概述2.量价关系分析2.1 价涨量增2.2 价涨量平2.3 价涨量缩2.4 价平量增2.5 价平量缩2.6 价跌量增2.7价跌量平2.8 价跌量缩3. 成交量与均线思想结合制定交易策略1.量价关系概述“量”有成交量(股数)、成交金额、换手率等多种表现形式,“量”一般指交易市场中某种证券在某一特定时期内的交易数量。成交量体现了市场中多空力量的博弈。成交的股数一般以“手”为单位,一手为100股。成交额则直接体现了交易的资金量。换手率指股票的每日成交量与股票的流通股本比值,主要体现个股原创 2021-05-02 16:14:26 · 2046 阅读 · 1 评论 -
Python 金融量化 随机指标交易策略
目录1.随机指标概述随机指标原理及计算公式3.1.随机指标概述随机指标(KDJ)又称为随机指数(The Random Index),是一种用来分析市场中超买或者超卖现象的指标。它最早应用于期货市场,后来在股票市场中被众多投资者广泛使用。KDJ最基础的交易思想建立在威廉指标(Williams %R,简称W%R)的基础上,威廉指标分析资产的价格时,除了考虑每天的收盘价以外,还有综合分析资产从开市到收市期间价格的变化情况。威廉指标的计算首先选择一个时间跨度(比如14日),然后找出这一特定区间的最高价和最低价原创 2021-05-01 23:36:31 · 2248 阅读 · 0 评论 -
Python 金融量化 RSI相对强弱指标
目录1. 定义获取数据函数2. RSI基本概述3. python编写Rsi函数4. python编写Rsi绘图函数5. 调用以上函数6.RSI指标判断股票超买和超卖状态7. RSI的“黄金交叉”与“死亡交叉”1. 定义获取数据函数第一步,我们照常从tushare获取数import tushare as tsimport pandas as pdtoken = 'Your token' # 输入你的接口密匙,获取方式及相关权限见Tushare官网。这句话不能照抄!pro = ts.pro_ap原创 2021-04-30 14:51:26 · 5372 阅读 · 1 评论 -
Python编写动量交易策略
目录1. 概念介绍2.计算动量2.1 作差法求动量2.2 作除法求动量3.定义求动量与作图函数4. 绘制K线图与动量图5. 动量交易策略的制定1. 概念介绍动量交易策略,即Momentum Trading Strategy。在经典力学里,动量即物体质量和速度的乘积,动量一方面描述了物体的运动状态,另一方面也描述了惯性的大小。在证券市场上,我们也可以把“证券的价格”类比成运动的物体,价格上涨时,可以说价格有着上涨的动量,价格下跌时其具有下跌的动量。这种动量可能会使上涨或下跌继续维持下去,也可能该动量会越原创 2021-04-27 11:18:47 · 5926 阅读 · 1 评论 -
Python 金融量化 道路突破策略(唐奇安道路突破策略&布林带通道及其市场风险)
目录获取数据1.通道突破简介2.唐安奇通道(Donchian Channel)2.1 唐安奇通道刻画2.2 在K线图中绘制唐安奇上下通道线2.3 Python捕捉唐安奇通道突破3.布林带通道3.1获取数据照常,第一步我们首先要通过接口获取股价数据。我以Tushare接口获取的2020年全年洛阳钼业股价数据(603993.SH)数据为例。# 导入相关模块import numpy as npimport tushare as tsimport pandas as pdimport matplotl原创 2021-04-23 17:44:12 · 4992 阅读 · 4 评论 -
Python 金融量化 均线系统交易策略专题(简单移动平均,加权移动平均,指数加权移动平均,异同移动平均MACD等解读与绘图)
捕捉趋势最普遍的方法为移动平均线,根据求平均的方式不同,移动平均数又可分为简单移动平均数(Simple Moving Average, SMA),加权移动平均数(Weighted Moving Average, WMA),和指数移动平均数(Exponential Moving Average, EXPMA或EMA)。原创 2021-04-21 17:42:09 · 3177 阅读 · 0 评论