力扣打卡——Day02

今天滑动窗口有点忘了,本来想用队列思想来完成,并使用list转int[] nums方法,但还是太复杂了没写成。


前言

依旧是老套路,一个是双指针法,一个是滑动窗口法,此文配上动画更好理解


一、977.有序数组的平方

给定一个含有 n 个正整数的数组和一个正整数 target 。找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。

示例 1:

输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。

示例 2:

输入:target = 4, nums = [1,4,4]
输出:1
示例 3:

输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0

提示:

1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 105
 

进阶:

如果你已经实现 O(n) 时间复杂度的解法, 请尝试设计一个 O(n log(n)) 时间复杂度的解法。

这题关键点其实是这个数组的形势是两边大中间小,所以要从两边比较采用双指针法,下面直接来个图看的更清晰一些:

这里我没有使用while(left <= right) 条件 而是使用for循环整个数组,因为左右一共遍历就是整个数组,这样可以顺便给结果数组填入数字

class Solution {
    public int[] sortedSquares(int[] nums) {
        int left = 0;
        int right = nums.length - 1;
        int[] result = new int[nums.length];
        for (int i = nums.length - 1; i >= 0; i--) {
            if (nums[left] * nums[left] >= nums[right] * nums[right]) {
                result[i] = nums[left] * nums[left];
                left++;
            }else {
                result[i] = nums[right] * nums[right]; 
                right--;
            }
        }
        return result;

    }
}

这里提供一种常规双指针解法while(left <= right)

class Solution {
    public int[] sortedSquares(int[] nums) {
        int right = nums.length - 1;
        int left = 0;
        int[] result = new int[nums.length];
        int index = result.length - 1;
        while (left <= right) {
            if (nums[left] * nums[left] > nums[right] * nums[right]) {
                // 正数的相对位置是不变的, 需要调整的是负数平方后的相对位置
                result[index--] = nums[left] * nums[left];
                ++left;
            } else {
                result[index--] = nums[right] * nums[right];
                --right;
            }
        }
        return result;
    }
}

二、长度最小的子数组

给定一个含有 n 个正整数的数组和一个正整数 target 。

找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。

示例 1:

输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:

输入:target = 4, nums = [1,4,4]
输出:1
示例 3:

输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
 

提示:

1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 105
 

进阶:

如果你已经实现 O(n) 时间复杂度的解法, 请尝试设计一个 O(n log(n)) 时间复杂度的解

废话不多说直接上图直观看滑动窗口,其实类似快慢指针


其实本题 最主要是右窗口正常遍历所有数组,左窗口在满足条件时在while循环里面进行处理,并且减少窗口。

for (int right = 0; right < nums.length; right++) {
            sum += nums[right];
            while (sum >= target) {
                result = Math.min(result, right - left + 1);
                sum -= nums[left];
                left++;
            }
        }

完全代码:

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int sum = 0;
        int left = 0;
        int result = Integer.MAX_VALUE;
        for (int right = 0; right < nums.length; right++) {
            sum += nums[right];
            while (sum >= target) {
                result = Math.min(result, right - left + 1);
                sum -= nums[left];
                left++;
            }
        }
        return result == Integer.MAX_VALUE ? 0 : result;
    }
}

小细节

对于第二题,一般选最大最小值时,我们一般会使用 Integer类中的最大最小值

//取最小值时选择最大初始值
int result = Integer.MAX_VALUE;
//取最大值时选择最小初始值
int result = Integer.MIN_VALUE;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

就想找个工作

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值