本论文主要解决两个问题:
- 以往的人体骨架图的拓扑结构是人为固定的,仅表示人体物理结构→自适应图卷积
- ST-GCN每个顶点的特征向量仅包含关节的2D或3D坐标(一阶信息),人体二阶信息没有充分利用(骨头的方向和长度)→双流结构
作者证明了几点:
- 图的拓扑应随动作不同而不同(比如摸头,头和手的连接关系更强;其他动作不一定)
- 不同的样本需要不同的图拓扑,不同的层需要具有不同拓扑结构的图
每一帧的骨架数据是一个而向量序列(每个关节点数据用向量表示,有多个关节点)。论文沿用了ST-GCN(时空图卷积)对人体骨架的建模方式:空间边(关节之间的连接)+时间边(每个关节和自己相邻帧的连接)。
(空间维度的图卷积公式)在空间维度上,对每一个顶点vi,计算它在下一层的向量值的方式为:所有跟vi相邻为1