- 启用Windows某些功能
点击,将红框中三项勾选上,点击确定,重新启动电脑。
- 安装WSL和Ubuntu
打开Microsoft Store,搜索ubuntu,点击安装Ubuntu 22.04.2 LTS。
安装完成后,打开Ubuntu:
配置Ubuntu用户信息,输入一个用户名和密码:
等待一会儿,即可配置成功。
新开一个终端窗口(Windows Power Shell 或 命令提示符)
输入下方命令查看已安装版本:
3. 将WSL和Ubuntu迁移到其他盘
默认情况下,WSL和Ubuntu会安装在C盘。
先输入下面的命令,将其暂停:
先确定要迁移的新盘的位置,如:E:\linux\ubuntu2204
在终端输入如下命令,出现操作成功完成就是导出成功了:
接下来注销C盘的版本:
注销成功后,重新导入WSL并安装在目标盘的对应位置:
导入成功后,就可以手动删除导入位置的tar包。
然后在终端输入:wsl
此时用户是root,不是我们自己创建的用户,我们可以设置默认登录用户。
先输入exit退回到终端,然后输入下面命令:ubuntu2204.exe config --default-user randlee
然后点击终端下拉图标选择进入Ubuntu。
4. 设置root用户密码
在ubuntu系统中,为安全考虑,默认是没有设置root用户的密码的。
给root用户设置密码,使用下面的命令:
5. 配置镜像源
1)查看ubuntu版本:cat /etc/issue
2) 备份镜像源
3)编辑镜像源配置文件:sudo vi /etc/apt/sources.list
,将文件中内容替换为阿里镜像源或清华镜像源。
4)刷新软件源:sudo apt-get update
5)安装用于编译和构建软件的工具库:sudo apt-get install build-essential
6. Anaconda的下载和安装
进入Anaconda官网,下载linux版的anaconda(.sh结尾的文件)。
将文件拷贝到Ubuntu中,在相应位置输入命令sh 文件名.sh进行安装(推荐在root用户下安装)。
一直按enter键,直到出现让选择yes和no的页面,键盘输入yes
选择安装位置,建议最好安装在普通用户可以访问的目录下,例如/usr/local、/opt、/home,否则普通用户可能无法正常使用。
安装完成后,配置Anaconda环境变量。
输入vi ~/.bashrc编辑环境变量,添加以下内容:
export PATH="/自己对应的路径名/anaconda3/bin:$PATH"
我的是:export PATH="/opt/anaconda3/bin:$PATH"
激活修改的内容:source ~/.bashrc
测试是否配置成功:输入conda
,若没有显示not fond 则表示 anaconda安装配置成功。
赋予普通用户使用Anaconda的权限:
直接在普通用户下执行:/opt/anaconda3/bin/conda init bash
,然后执行conda env list
测试。
7. 显卡驱动、Cuda安装
输入nvidia-smi,查看自己所需要的cuda版本号,我的是11.8
打开nvidia官网,点击对应版本链接进入下载界面。
将上面生成的命令拷贝下来,先执行第一行命令下载cuda:
然后执行第二行命令安装cuda:
安装过程中要accept协议,然后选择install进行安装。
安装后的默认路径如下:
8. 配置cuda的环境变量
输入sudo vi ~/.bashrc
命令修改环境变量,在文末添加下面四行:
export PATH="/anaconda3的路径名/anaconda3/bin:$PATH"
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/extras/CPUTI/lib64
export CUDA_HOME=/usr/local/cuda/bin
export PATH=$PATH:$LD_LIBRARY_PATH:$CUDA_HOME
输入source ~/.bashrc
命令激活刚刚修改的内容。
依次输入以下命令,测试cuda是否安装成功。
nvcc -V
cd /usr/local/cuda/extras/demo_suite/
./bandwidthTest
出现Result = PASS即为成功。
- 下载、安装cuDNN
打开nvidia官网,点击对应版本链接进入下载界面(我的cuda版本是11.8,选择11.x的任一版本的cuDNN都可以,推荐使用tar包的方式),下载需要注册登陆英伟达账户。
将下载好的文件拷贝到Ubuntu系统中,并执行以下解压缩命令:
unxz cudnn-linux-x86_64-8.9.0.131_cuda12-archive.tar.xz
tar -vxf cudnn-linux-x86_64-8.9.0.131_cuda12-archive.tar
cuDNN的安装
进入解压后的目录中,打开终端,输入下述命令:
sudo cp include/cudnn*.h /usr/local/cuda/include/
sudo cp lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
执行完毕后,输入以下命令验证cuDNN是否安装成功:
cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
10. 创建Anaconda虚拟环境,用于搭建pytorch深度学习框架。
使用anaconda安装环境后,本地默认环境为base环境。
(1) 创建名为torch的空间:conda create -n torch
(2) 进入torch虚拟环境:conda activate torch
(3) 查看已经安装的环境(带星号的表示目前正在使用的环境):conda env list
11. 搭建Pytorch环境
进入pytorch官网下载对应版本的pytorch
- 选择pytorch版本
- 选择对应的操作系统
- 选择使用什么安装,conda里可以使用pip安装的
- 选择编程语言为python
- 选择cuda版本:我的版本是11.8
在torch虚拟环境中执行上面生成的命令:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
12. 安装相关依赖库
进入anaconda官网搜索需要安装的库名(无需注册登录)
复制官网上的安装命令,在虚拟环境中执行:conda install -c pytorch pytorch
登入python执行import torch
,print(torch.__version__)
验证是否安装成功。
13. 安装其他依赖库
输入conda deactivate
关闭虚拟环境,回到终端界面
配置pip源:pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
更新pip工具:pip install --upgrade pip
安装上图中缺少的NumPy。
14. 使用Anaconda自带的jupyter notebook打开页面。