YOLO11实例分割实战

制作数据集 

使用labelme,在里面配置SAM分割一切模型,辅助标注得到所有图像的json文件

检查json格式文件,确保是实例分割格式( class x1 y1 x2 y2 ... xn yn,表示多边形点坐标),避免是目标检测格式class x_center y_center width height,表示矩形框坐标宽高)

环境安装 

使用Anaconda创建虚拟环境 

conda create -n yolov11 python=3.11.3 
conda activate yolov11

安装pytorch,在控制台输入nvidia-smi即可查看CUDA Version,此处版本为cuda最高支持版本,安装cuda时不大于该版本即可

PyTorch Foundation里面选择CUDA11.8不高于本机12.2的版本

数据集json转txt

python脚本代码:

import os
import json
from tqdm import tqdm

# 设置路径
json_dir = "D:\打靶项目"       # 存放 .json 的目录
output_txt_dir = "D:\ShootDetection\Demo\data\labels"  # 转换后 .txt 保存目录
os.makedirs(output_txt_dir, exist_ok=True)

# 遍历所有 json 文件
for json_file in tqdm(os.listdir(json_dir)):
    if not json_file.endswith(".json"):
        continue

    json_path = os.path.join(json_dir, json_file)
    with open(json_path, 'r') as f:
        data = json.load(f)

    image_width = data.get("imageWidth")
    image_height = data.get("imageHeight")

    txt_lines = []

    for shape in data.get("shapes", []):
        if shape.get("shape_type") != "polygon":
            continue  # 跳过非多边形的标注

        label = shape.get("label")
        class_id = int
<think>好的,用户想了解YOLOv11实例分割方面的应用或实现,特别是教程或代码实现。我需要先看看提供的参考资料。引用中提到了YOLOv8和YOLOv5的实例分割,但用户问的是YOLOv11。不过引用[2]提到了C#中使用YOLOv11实现实例分割实战步骤和源码,这可能是一个关键点。 首先,我需要确认YOLOv11是否存在,因为通常YOLO系列到v8之后有不同的分支。可能用户提到的YOLOv11是某个特定版本或变种。根据引用[2],可能有人已经实现了YOLOv11实例分割,尤其是在C#环境下。但通常YOLO的官方实现多用Python,所以用户可能需要跨语言的解决方案。 接下来,用户需要教程或代码实现。引用[2]提供了C#的步骤和源码,引用[3]是关于YOLOv8的搭建,引用[4]是YOLOv5的实例分割。可能需要结合这些信息来推测YOLOv11的实现方法,尤其是因为YOLOv11可能不是官方版本,所以社区可能有自己的实现方式。 用户可能遇到的问题包括环境配置、模型加载、数据预处理和后处理。根据引用[2],使用OpenCvSharp和YoloSharp库,这可能在C#中处理图像和模型推理。需要指导用户安装必要的NuGet包,比如YoloSharp和OpenCvSharp,并确保模型文件正确加载。 另外,用户可能需要训练自己的模型,但问题更侧重于应用或实现现有的模型。引用[4]提到修改权重文件的位置,这可能同样适用于YOLOv11,即替换预训练权重为自己的实例分割模型。 需要指出的是,YOLOv11实例分割可能不如v8或v5成熟,所以用户可能需要参考现有YOLO实例分割的实现方式,并注意可能的差异。同时,要提醒用户注意版本兼容性和依赖库的安装,避免环境问题。 最后,要生成相关问题,帮助用户深入理解,比如性能优化、应用场景比较等,这可能基于用户可能遇到的后续问题。</think>### YOLOv11实例分割实现解析 根据现有资料和YOLO系列的通用实现逻辑,YOLOv11实例分割实现可分为以下步骤(以C#环境为例): #### 1. 环境配置 ```bash # 安装NuGet包 Install-Package YoloSharp Install-Package OpenCvSharp4 Install-Package OpenCvSharp4.runtime.win ``` 需要.NET Framework 4.7.2+或.NET Core 3.1+环境[^2] #### 2. 模型加载 ```csharp var configuration = new ConfigurationDetector { ModelPath = "yolov11-seg.onnx", Labels = File.ReadAllLines("coco.names") }; using var segmentator = new YoloSegmentator(configuration); ``` 需准备ONNX格式模型文件和类别标签文件[^2] #### 3. 图像处理 ```csharp using var image = Cv2.ImRead("test.jpg"); var predictions = segmentator.Predict(image); ``` #### 4. 结果解析 ```csharp foreach (var prediction in predictions) { // 绘制边界框 Cv2.Rectangle(image, prediction.Rectangle, Scalar.Red); // 绘制掩膜 using var mask = new Mat(image.Size(), MatType.CV_8UC1, prediction.Mask); image.SetTo(Scalar.Green, mask); } ``` 实例分割会同时输出边界框和像素级掩膜[^4] #### 5. 效果优化 $$ IoU = \frac{Area\ of\ Overlap}{Area\ of\ Union} $$ 可通过调整非极大值抑制(NMS)阈值(通常设为0.5-0.7)优化检测效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值