【题解-Acwing】173. 矩阵距离

题目:173. 矩阵距离

题目描述

给定一个 N N N M M M 列的 01 01 01 矩阵 A A A A [ i ] [ j ] A[i][j] A[i][j] A [ k ] [ l ] A[k][l] A[k][l] 之间的曼哈顿距离定义为:

d i s t ( i , j , k , l ) = ∣ i − k ∣ + ∣ j − l ∣ dist(i,j,k,l)=|i−k|+|j−l| dist(i,j,k,l)=ik+jl

输出一个 N N N M M M 列的整数矩阵 B B B,其中:

B [ i ] [ j ] = m i n 1 ≤ x ≤ N , 1 ≤ y ≤ M , A [ x ] [ y ] = 1 d i s t ( i , j , x , y ) B[i][j]=min_{1≤x≤N,1≤y≤M,A[x][y]=1}dist(i,j,x,y) B[i][j]=min1xN,1yM,A[x][y]=1dist(i,j,x,y)

输入格式

第一行两个整数 N N N, M M M

接下来一个 N N N M M M 列的 01 01 01 矩阵,数字之间没有空格。

输出格式

一个 N N N M M M 列的矩阵 B B B,相邻两个整数之间用一个空格隔开。

数据范围

1 ≤ N , M ≤ 1000 1≤N,M≤1000 1N,M1000

时空限制

1s / 64MB

输入样例

3 4
0001
0011
0110

输出样例

3 2 1 0
2 1 0 0
1 0 0 1

代码

#include<iostream>
#include<cstring>

using namespace std;

typedef pair<int, int> PII;
const int Maxn = 1000 + 10, Maxm = 1000 + 10;

int n, m, hh, tt = -1, dist[Maxn][Maxm];
char g[Maxn][Maxm];
PII q[Maxn * Maxm];

void bfs(){
    memset(dist, -1, sizeof dist);
    for(int i = 0; i < n; i ++){
        for(int j = 0; j < m; j ++){
            if(g[i][j] == '1'){
                dist[i][j] = 0;
                q[++ tt] = {i, j};
            }
        }
    }
    
    while(hh <= tt){
        auto t = q[hh ++];
        
        int dx[] = {-1, 0, 1, 0};
        int dy[] = {0, 1, 0, -1};
        for(int i = 0; i < 4; i ++){
            int x = t.first + dx[i], y = t.second + dy[i];
            
            if(x < 0 || x >= n || y < 0 || y >= m){
                continue;
            }
            if(dist[x][y] != -1){
                continue;
            }
            
            q[++ tt] = {x, y};
            dist[x][y] = dist[t.first][t.second] + 1;
        }
    }
}

int main(){
    scanf("%d %d", &n, &m);
    for(int i = 0; i < n; i ++){
        scanf("%s", &g[i]);
    }
    
    bfs();
    
    for(int i = 0; i < n; i ++){
        for(int j = 0; j < m; j ++){
            printf("%d ", dist[i][j]);
        }
        puts("");
    }
    
    return 0;
}

结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值