卷积神经网络--可视化中间激活

本文探讨了如何可视化卷积神经网络的中间激活,揭示网络在处理输入图像时学习到的视觉特征。从第一层的边缘探测器到深层的抽象表示,通过观察不同通道的激活,我们可以洞察模型如何逐步提取和转换信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积神经网络–可视化中间激活

**摘要:**卷积神经网络学到的表示非常适合可视化,很大程度是因为它们是视觉概念的表示。本文将介绍一种非常容易理解也非常有用的方法—可视化中间激活。可视化中间激活,是指对于给定输入,展示网络中各个卷基层和池化层输出的特征图(层的输出通常被称为该层的激活,即激活函数的输出)。

1、加载模型

我们希望在3个维度对特征图进行可视化:宽度、高度和深度(通道)。每个通道都对应相对独立的特征,所以将这些特征图可视化的正确方法是将每个通道的内容制作成二维图像。

from keras.models import load_model
model=load_model('cats_and_dogs_small_2.h5')
model.summary(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@@南风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值