Spark 的内存和磁盘溢写策略
在 Apache Spark 中,内存管理和磁盘溢写(Spilling)是两个重要的机制,用于处理数据的存储和计算。这些机制的设计旨在最大化内存利用率,同时确保在内存不足时能够将数据溢写到磁盘,以避免 OOM(Out of Memory)错误。
1. 内存管理
内存管理器:
- Spark 使用一个内存管理器来管理执行任务所需的内存。内存管理器分为两个主要部分:执行内存(Execution Memory)和存储内存(Storage Memory)。
- 执行内存:用于 shuffle 操作、join 操作、排序等中间结果的存储。
- 存储内存:用于缓存 RDD 数据和广播变量。
内存配置参数:
spark.executor.memory
:设置每个 Executor 的总内存大小。spark.shuffle.memoryFraction
:设置用于 shuffle 操作的内存比例,默认值为 0.6。spark.storage.memoryFraction
:设置用于存储 RDD 的内存比例,默认值为 0.6。
2. 磁盘溢写策略
溢写机制:
- 当内存不足以存储中间结果或缓存数据时,Spark 会将数据溢写到磁盘上。
- 溢写操作会带来额外的 I/O 开销,因此需要尽量避免频繁的溢写。
溢写场景:
- Shuffle 操作:在 shuffle 操作中,如果某个分区的数据量超过了分配给该分区的内存大小,Spark 会将超出部分的数据溢写到磁盘。