YOLOv5、YOLOv8改进-BIFPN

本文介绍了如何在YOLOv5中应用BIFPN进行改进,通过修改common.py构建Concat_BIFPN模块,注册到yolo.py中,并调整yaml配置文件来优化特征融合网络,以提升目标检测的性能。BIFPN是一种加权双向特征金字塔网络,通过融合不同层级的特征信息,提高检测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. BiFPN论文简介

 2.YOLOv5改进

2.1第一步:common.py构建Concat_BIFPN模块

2.2第二步:yolo.py中注册Concat_BIFPNt模块

 2.3第三步:修改yaml文件(以修改官方YOLOv5s.yaml为例),需要修改head(特征融合网络)


1. BiFPN论文简介

论文《EfficientDet: Scalable and Efficient Object Detection》地址:https://arxiv.org/abs/1911.09070

BiFPN 全称 Bidirectional Feature Pyramid Network 加权双向(自顶向下 + 自低向上)特征金字塔网络。

加入BIFPN加权双向金字塔结构,提升不同尺度的检测效果。

 

图中蓝色部分为自顶向下的通路,传递的是高层特征的语义信息;红色部分是自底向上的通路,传递的是低层特征的位置信息;紫色部分是同一层在输入节点和输入节点间新加的一条边。

我们删除那些只有一条输入边的节点。这么做的思路很简单:如果一个节点只有一条输入边而没有特征融合,那么它对旨在融合不同特征的特征网络的贡献就会很小。删除它对我们的网络影响不大,同时简化了双向网络;如上图d 的 P7右边第一个节点
如果原始输入节点和输出节点处于同一层,我们会在原始输入节点和输出节点之间添加一条额外的边。思路:以

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值