
Tensorflow2.0
Tensorflow2.0实战深度学习模型
DocPark
在读研究生
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Tensorflow2.0:编程笔记
尽管之前看了Tensorflow2.0的语法句,但总归还是不够熟练,在实践上总归是有点陌生,因此特地记录自己的一些感悟和理解。import tensorflow as tffrom tensorflow import kerasimport numpy as np# 1. 去除维度# 生成[1, 25, 25, 3]的维度x = tf.reshape(tf.range(1, 1876)...原创 2020-03-05 21:04:30 · 520 阅读 · 0 评论 -
Tensorflow2.0:Faster RCNN 代码详解(二)
这次重点解析在Tensorflow2.0:Faster RCNN 代码详解(一)中关于引用rpn_heads文件函数的代码,该代码实际上是编写了Faster RCNN 中RPN网络的过程。import tensorflow as tffrom tensorflow.keras import layersfrom detection.core.anchor import anchor_gene...原创 2020-03-05 21:00:40 · 1721 阅读 · 4 评论 -
Tensorflow2.0:Faster RCNN 代码详解(一)
第一部分给出Fater RCNN文件的代码解析,主要是模型主体的执行过程,在此文件引入下述几个文件的函数引用,对于backbones,necks和test_mixins文件来说,主要是用来构建模型结构,并不复杂,主要是按照tf语法搭积木就可以了,因此在第二到第四部分给出,并不多做解析,至于剩下的四个文件,后面的文章继续解析。from detection.models.backbones imp...原创 2020-03-05 09:12:54 · 3445 阅读 · 2 评论 -
Tensorflow2.0:实现Yolo v3的五个问题及代码解析目录
一 模型结构二 先验框宽高长度的确定K-mean算法三 模型输出与预测框四 损失函数的计算五 模型的训练过程先用训练集训练模型,计算损失,梯度下降更新参数,等更新完毕后再用测试集测试。代码解析部分一共8个代码文件,其文件结构为:主体是yolo v3文件,训练是 train文件,测试是test文件,引入文件用到了common,backbone,utils,config和d...原创 2020-03-04 23:21:46 · 914 阅读 · 2 评论 -
Tensorflow2.0:Yolo v3代码详解 (二)
这是主要针对训练过程的工程实现的细节解析,因此下面给出train文件的代码解析其中,utils和config可以在Tensorflow2.0:Yolo v3代码详解 (三)中,yolov3可以在Tensorflow2.0:Yolo v3代码详解 (一)中,对于dataset则在第二部分给出第一部分 针对train文件代码解析import osimport timeimport shuti...原创 2020-03-04 22:56:29 · 1574 阅读 · 8 评论 -
Tensorflow2.0:Yolo v3代码详解(三)
这次主要是针对yolov3执行测试过程的代码解析,第一部分是主体train文件代码解析,第二部分是针对utils文件代码解析,第三部分是针对config文件代码解析第一部分 针对train文件代码解析yolov3文件代码可以在Tensorflow2.0:Yolo v3代码详解(一)找到import cv2import osimport shutilimport numpy as np...原创 2020-03-04 22:50:34 · 1652 阅读 · 1 评论 -
Tensorflow2.0:Yolo v3代码详解(一)
为了避免重复造轮子,关于Yolo v3模型的原理就不多说了,下面主要是分析下Yolo v3在Tensorflow2.0版本里面是如何具体实现的,首先我们来分析下模型构建的主代码,这里非常感谢github 上的yunyang1994关于该代码的分享,我在这里只是对于他的代码进行了一个解读,来了解下Yolo v3在工程实现上的一些小细节,以提高自己对Tensorflow 2.0版本语法的掌握水平。对...原创 2020-03-03 22:27:23 · 3846 阅读 · 4 评论 -
Tensorflow2.0:CycleGan
CycleGANcycleGAN可用于风格迁移,用来处理图像转换过程中数据unpair的问题。如下图所示,原本正常马可以变成斑马,同时保持背景不变。其本质是两个对称的GAN,构成一个环形网络。两个GAN共享两个生成器,并各自带一个判别器,即总共两个判别器和两个生成器。Loss的计算本质上还是Gan,所以弄清楚其损失函数的计算方法就可以了。# 鉴别器的lossdef discrimina...原创 2020-02-25 12:52:16 · 916 阅读 · 0 评论 -
Tensorflow2.0:变分自编码器
写在前言在网上和书上查了许多资料,关于变分自编码器的内容主要以公式推导和理论讲解为主,看了很长时间,感觉这些资料尽管在细节上讲的很清楚,但并未将变分自编码器讲透,没有说明白这个到底是什么东西,到底是干嘛用的,因此写下这篇总结,来加深对自变分编码器的认识。VAE的核心思想VAE认为,对于任何样本数据,可以认为是一定数量的特征组合在一起,是该组合决定了这个样本数据。对于每一个特征来说,其特征值并...原创 2020-02-24 16:16:48 · 1468 阅读 · 0 评论 -
Tensorflow2.0:ReNet18分类CIFAR10数据集
神经网络模型层数的加深会在训练过程中出现梯度弥散和梯度爆炸现象,网络层越深,该现象越容易出现,也越严重。Skip Connection机制由于浅层神经网络不容易出现这些梯度现象,那么通过在输入和输出之间添加一条直接连接的 Skip Connection 可以让神经网络具有回退的能力。以VGG13深度神经网络为例,假设在10层没有观测到梯度弥散现象,那么可考虑在最后的两个卷积层中添加Skip ...原创 2020-02-22 11:58:28 · 668 阅读 · 0 评论 -
Tensorflow2.0:卷积神经网络CNN
一 全连接网络所遇到的问题对于一个大小为2828像素的图片来说,将他的二维向量铺平一维输入神经网络中,它就拥有784个特征,那么以该特征随意建立个神经网络模型,其示意图如下:由于输入节点和输出节点是两两相连的关系,使得参数稠密,计算代价高,这使得全网络连接在应用上有很大的局限性。二 什么是卷积神经网络卷积神经网络的核心思想就是局部相关性与权值共享。1.什么是局部相关性?对于一个图片来...原创 2020-02-22 10:49:53 · 1623 阅读 · 0 评论 -
Tensorflow2.0:实战VGG13分类CIFAR10数据集
CIFAR10 数据集CIFAR10 数据集包含了飞机、汽车、鸟、猫等共 10 大类物体的彩色图片,每个种类收集了 6000 张32 × 32大小图片,共 6 万张图片。其中 5 万张作为训练数据集, 1 万张作为测试数据集。原始的VGG13模型参数量较大,模型以Conv-Conv-MaxPooling 为单元结构组建而成,其结构如下:整个模型涉及的参数量的量级是很大的,参数数量达到了94...原创 2020-02-21 10:57:07 · 1477 阅读 · 0 评论 -
Tensorflow2.0:实战LeNet-5识别MINIST数据集
LeNet-5模型1990 年代提出的LeNet-5使卷积神经网络在当时成功商用,下图是 LeNet-5 的网络结构图,它接受32 × 32大小的数字、字符图片,这一次将LeNet-5识别MINIST数据集中的数字,并在测试集中计算其识别准确率。根据上图的网络结构,可以得出下图的模型结构图:完整代码示例第一部分:数据集的加载与预处理import tensorflow as t...原创 2020-02-20 19:02:21 · 1987 阅读 · 4 评论 -
Tensorflow2.0:加载与识别经典数据集MINIST
一 实现思路1. 加载 MNIST 数据集,得到训练集与测试集**2. 将训练集与测试集转换为DataSet对象3. 将数据顺序打散避免每次读取数据顺序相同,使得模型记住训练集的一些特点,降低模型泛化能力。4. 设置批训练从训练集总数中随机抽取batchsize个样本,来进行模型训练,相比于使用所用样本构建模型,批训练花费的时间更少,计算效率更高。每训练一个次,就叫一个step,当经历...原创 2020-02-20 17:02:20 · 2682 阅读 · 2 评论 -
Tensorflow2.0:进阶操作
目录一 合并与分割1.合并拼接 tf.concat含义:原有维度上的合并,不会增加新的维度要求:任意维度上拼接,非拼接的维度长度要一样a = tf.random.normal([4, 35, 8])b = tf.random.normal([6, 35, 8])# 第一个维度上的拼接c = tf.concat([a, b], axis=0) # shape为[10,35,8]...原创 2020-02-19 22:25:08 · 372 阅读 · 0 评论 -
Tensorflow2.0:基础操作
目录关于Tensorflow2.0的基础操作,将从以下几个方面依次去写:数据类型 数据精度 待优化张量创建特殊张量索引与切片维度变换Broadcasting机制先加载一下tensorflowimport tensorflow as tf一 数据类型tf的数据结构实际上是从python里的列表对象和Numpy的数组对象转换过来。1.数值类型数值类型有标量,向量,...原创 2020-02-19 22:10:08 · 224 阅读 · 0 评论