扩散模型的sampling和training

本文探讨了在模型训练过程中如何利用噪声作为目标,并通过时间戳进行先验信息的嵌入。模型通过对原始输入的不同变换实现多次训练,提高泛化能力。在采样过程中,模型依据输入时刻的样本,输出相应的噪声,类似transformer中的位置编码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 (1)训练的时候的

也就是说每次模型的训练目标是这个噪声,

红色的t:时间戳,做一个time_embedding的感觉,提供一种先验。

黄色的:模型对于原始输入x0的一个处理,也就是不断地变换从而对同一张图片进行多次的训练。

绿色的:是随机的噪声。

 预测的过程,也就是sampling的过程中,是对于模型进行输入时刻较多的时候的样本x,所以因为训练的时候的目标就是和噪声做loss,所以输出的也是噪声,模型有一个先验也就是t,会根据t来进行噪声的输出,类似于transformer里面的位置编码。

也就是说,最终的输出x是逐步的。

 

### NeRF 扩散模型 (SDS) 的比较 #### 定义与背景 Neural Radiance Fields (NeRF)[^3] 是一种基于神经网络的方法,用于从多视图图像重建高分辨率的 3D 场景。它通过学习连续体素辐射场来表示场景,并能够生成高质量的新视角合成图像。 相比之下,扩散模型是一种生成式建模方法,最初应用于图像生成领域。具体而言,在计算机视觉图形学中,DreamFusion 提出了一种名为 Score Distillation Sampling (SDS)[^2] 的技术,该技术允许将预训练的二维扩散模型扩展到三维空间,从而实现更复杂的 3D 编辑任务。 --- #### 数据需求与适用范围 NeRF 需要大量的多视图数据集来进行训练,这些数据通常来自同一物体的不同角度拍摄的照片。因此,其应用主要集中在静态对象或有限环境下的新视角合成上[^3]。 而扩散模型结合 SDS 技术则更加灵活,可以仅依赖于少量甚至单张参考图片以及文本提示完成复杂场景的创建与修改工作。这种方法不仅适用于简单的几何形状恢复,还支持纹理细节调整等多种高级功能。 --- #### 训练过程差异 对于 NeRF 而言,整个流程涉及定义一个隐式的体积密度函数 ρ(x) 及颜色 c(x),并通过优化目标最小化渲染结果与真实观测之间的差距来获得最终模型参数设置[^3]: \[ L_{\text{NeRF}} = \sum_i || C(\mathbf{r}_i, t_1,...t_N; \theta ) - I_i||^2 \] 其中 \(C\) 表示沿光线积分得到的颜色值;\(I_i\) 则代表实际像素强度。 另一方面,当涉及到扩散模型配合 SDS 使用时,则先固定住已经过微调处理后的权重不变,再针对特定局部区域执行进一步迭代改进操作直至满足预期效果为止: \[ L_{\text{SDS}} = E_q[\|\nabla_\Theta f_\phi (\tilde{x}^{(k)}, y)\| ^2 ] \] 这里 \(f_\phi ()\) 对应的是条件分布估计器;\(\tilde{x}\) 来源于噪声扰动版本的数据样本集合。\(\Theta\) 涵盖了可调节变量组群。 --- #### 输出质量考量 尽管两者都能提供令人印象深刻的成果展示,但在某些方面仍然存在区别对待之处。例如说,借助精心设计损失项引导机制之后,运用扩散模型加成版方案往往能够在保持全局一致性前提下更好地捕捉细微特征变化趋势 。与此同时,传统意义上的 NeRF 更擅长忠实再现原始素材所携带的信息内容 ,不过可能缺乏足够的创造潜力去探索未知可能性边界之外的东西[^3]. ```python import torch from diffusers import StableDiffusionPipeline # Example of using a diffusion model with text-to-image generation. model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id) prompt = "A realistic avatar creation through explicit 3D consistent diffusion models." image = pipe(prompt).images[0] image.save("avatar_creation.png") ``` 上述代码片段展示了如何利用稳定扩散管道实例根据给定的文字说明生成相应的可视化产物。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值