题目描述:
给你一个大小为 n x n 的二元矩阵 grid ,其中 1 表示陆地,0 表示水域。
岛 是由四面相连的 1 形成的一个最大组,即不会与非组内的任何其他 1 相连。grid 中 恰好存在两座岛 。
你可以将任意数量的 0 变为 1 ,以使两座岛连接起来,变成 一座岛 。
必须翻转的 0 的最小数目。
示例1:
输入:grid = [[0,1],[1,0]] 输出:1
示例2:
输入:grid = [[0,1,0],[0,0,0],[0,0,1]] 输出:2
示例3:
输入:grid = [[1,1,1,1,1],[1,0,0,0,1],[1,0,1,0,1],[1,0,0,0,1],[1,1,1,1,1]] 输出:1
提示:
n == grid.length == grid[i].length
2 <= n <= 100
grid[i][j]
为0
或1
grid
中恰有两个岛
思路:
这道题我一开始是完全不知道怎么做的,后面看了题解才知道了该怎么做。
题目中要求解最短的桥,转换一下就是求解二维数组中两个块的最短距离。因此我们可以使用广度优先算法,首先找到其中一座岛,然后将其不断向外延伸一圈,直到到达了另一座岛,延伸的圈数即为最短距离。
实际计算过程如下:
我们通过遍历找到数组 \textit{grid}grid 中的 11 后进行广度优先搜索,此时可以得到第一座岛的位置集合,记为 \textit{island}island,并将其位置全部标记为 -1−1。
随后我们从 \textit{island}island 中的所有位置开始进行广度优先搜索,当它们到达了任意的 11 时,即表示搜索到了第二个岛,搜索的层数就是答案。
这么讲可能有点抽象,我们可以画张图来解释一下。我们以示例2举例:
代码如下:
class Solution {
public:
int shortestBridge(vector<vector<int>>& grid) {
int n = grid.size();
vector<vector<int>> dirs = {{-1, 0}, {1, 0}, {0, 1}, {0, -1}};
vector<pair<int, int>> island;
queue<pair<int, int>> qu;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 1) {
qu.emplace(i, j);
grid[i][j] = -1;
while (!qu.empty()) {
auto [x, y] = qu.front();
qu.pop();
island.emplace_back(x, y);
for (int k = 0; k < 4; k++) {
int nx = x + dirs[k][0];
int ny = y + dirs[k][1];
if (nx >= 0 && ny >= 0 && nx < n && ny < n && grid[nx][ny] == 1) {
qu.emplace(nx, ny);
grid[nx][ny] = -1;
}
}
}
for (auto &&[x, y] : island) {
qu.emplace(x, y);
}
int step = 0;
while (!qu.empty()) {
int sz = qu.size();
for (int i = 0; i < sz; i++) {
auto [x, y] = qu.front();
qu.pop();
for (int k = 0; k < 4; k++) {
int nx = x + dirs[k][0];
int ny = y + dirs[k][1];
if (nx >= 0 && ny >= 0 && nx < n && ny < n) {
if (grid[nx][ny] == 0) {
qu.emplace(nx, ny);
grid[nx][ny] = -1;
} else if (grid[nx][ny] == 1) {
return step;
}
}
}
}
step++;
}
}
}
}
return 0;
}
};